scholarly journals Loss of ergodicity in a quantum hopping model of a dense many body system with repulsive interactions

Author(s):  
Kazue Matsuyama
Entropy ◽  
2020 ◽  
Vol 22 (9) ◽  
pp. 984
Author(s):  
Regina Finsterhölzl ◽  
Manuel Katzer ◽  
Andreas Knorr ◽  
Alexander Carmele

This paper presents an efficient algorithm for the time evolution of open quantum many-body systems using matrix-product states (MPS) proposing a convenient structure of the MPS-architecture, which exploits the initial state of system and reservoir. By doing so, numerically expensive re-ordering protocols are circumvented. It is applicable to systems with a Markovian type of interaction, where only the present state of the reservoir needs to be taken into account. Its adaption to a non-Markovian type of interaction between the many-body system and the reservoir is demonstrated, where the information backflow from the reservoir needs to be included in the computation. Also, the derivation of the basis in the quantum stochastic Schrödinger picture is shown. As a paradigmatic model, the Heisenberg spin chain with nearest-neighbor interaction is used. It is demonstrated that the algorithm allows for the access of large systems sizes. As an example for a non-Markovian type of interaction, the generation of highly unusual steady states in the many-body system with coherent feedback control is demonstrated for a chain length of N=30.


Physics Today ◽  
2013 ◽  
Vol 66 (11) ◽  
pp. 18-18
Author(s):  
Richard J. Fitzgerald
Keyword(s):  

1978 ◽  
Vol 18 (5) ◽  
pp. 2416-2429 ◽  
Author(s):  
M. R. Anastasio ◽  
Amand Faessler ◽  
H. Müther ◽  
K. Holinde ◽  
R. Machleidt

2008 ◽  
Vol 4 (6) ◽  
pp. 489-495 ◽  
Author(s):  
S. Hofferberth ◽  
I. Lesanovsky ◽  
T. Schumm ◽  
A. Imambekov ◽  
V. Gritsev ◽  
...  
Keyword(s):  

2009 ◽  
Vol 24 (11) ◽  
pp. 2198-2204
Author(s):  
KIYOMI IKEDA

We present a brief history of the structure study of 16 O as a typical example in the development of the cluster model theory over 50 years.


Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 486
Author(s):  
Thomás Fogarty ◽  
Miguel Ángel García-March ◽  
Lea F. Santos ◽  
Nathan L. Harshman

Interacting quantum systems in the chaotic domain are at the core of various ongoing studies of many-body physics, ranging from the scrambling of quantum information to the onset of thermalization. We propose a minimum model for chaos that can be experimentally realized with cold atoms trapped in one-dimensional multi-well potentials. We explore the emergence of chaos as the number of particles is increased, starting with as few as two, and as the number of wells is increased, ranging from a double well to a multi-well Kronig-Penney-like system. In this way, we illuminate the narrow boundary between integrability and chaos in a highly tunable few-body system. We show that the competition between the particle interactions and the periodic structure of the confining potential reveals subtle indications of quantum chaos for 3 particles, while for 4 particles stronger signatures are seen. The analysis is performed for bosonic particles and could also be extended to distinguishable fermions.


2020 ◽  
Vol 22 (8) ◽  
pp. 083077
Author(s):  
S Sarkar ◽  
C Mukhopadhyay ◽  
A Bayat
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document