Micromagnetic model for studies on Magnetic Tunnel Junction switching dynamics, including local current density

2014 ◽  
Vol 435 ◽  
pp. 105-108 ◽  
Author(s):  
Marek Frankowski ◽  
Maciej Czapkiewicz ◽  
Witold Skowroński ◽  
Tomasz Stobiecki
2015 ◽  
Vol 27 (12) ◽  
pp. 2725-2730 ◽  
Author(s):  
Maryna G. Taryba ◽  
M. F. Montemor ◽  
S. V. Lamaka

Author(s):  
Shan Jia ◽  
Hongtan Liu

In a PEM fuel cell, local current density can vary drastically under the land and channel areas. The non-uniform current density distribution not only affects the overall performance of the fuel cell, but also leads to the local temperature and concentration differentiation on the MEA, which can cause problems such as membrane dehydration and catalyst degradations at certain locations. In order to investigate the local current performance, the objective of this work is to directly measure the local current density variations across the land and channel at the cathode in a PEM fuel cell with partially-catalyzed MEAs. First, the cathode flow plate is specially designed with a single-serpentine channel structure, and the gas diffusion electrode at cathode side is cut to fit this flow field size (5.0cm×1.3cm). Then five different partially-catalyzed MEAs with 1mm width corresponding to different locations from the middle of the gas channel to the middle of the land area are made. Fuel cells with each of the partially-catalyzed MEAs have been tested and the results provide the lateral current density distribution across the channel and the land areas. In the high cell voltage region, local current density is highest under the center of the land area and decreases toward the center of the channel area; while in the low cell voltage region local current density is highest under the middle of the channel area and decrease toward the center of the land area. Different flow rates are tested at the cathode side of the cell to study their effects on the local current density performance along the land-channel direction. And the results show that the flow rate barely has the effect on the current at the high cell voltage region, while it plays a significant role at the low voltage region due to the mass transport effect.


2005 ◽  
Vol 23 (5) ◽  
pp. 1849-1865 ◽  
Author(s):  
C. Vallat ◽  
I. Dandouras ◽  
M. Dunlop ◽  
A. Balogh ◽  
E. Lucek ◽  
...  

Abstract. The inner magnetosphere's current mapping is one of the key elements for current loop closure inside the entire magnetosphere. A method for directly computing the current is the multi-spacecraft curlometer technique, which is based on the application of Maxwell-Ampère's law. This requires the use of four-point magnetic field high resolution measurements. The FGM experiment on board the four Cluster spacecraft allows, for the first time, an instantaneous calculation of the magnetic field gradients and thus a measurement of the local current density. This technique requires, however, a careful study concerning all the factors that can affect the accuracy of the J estimate, such as the tetrahedral geometry of the four spacecraft, or the size and orientation of the current structure sampled. The first part of this paper is thus providing a detailed analysis of the method accuracy, and points out the limitations of this technique in the region of interest. The second part is an analysis of the ring current region, which reveals, for the first time, the large latitudinal extent of the ring current, for all magnetic activity levels, as well as the latitudinal evolution of the perpendicular (and parallel) components of the current along the diffuse auroral zone. Our analysis also points out the sharp transition between two distinct plasma regions, with the existence of high diamagnetic currents at the interface, as well as the filamentation of the current inside the inner plasma sheet. A statistical study over multiple perigee passes of Cluster (at about 4 RE from the Earth) reveals the azimuthal extent of the partial ring current. It also reveals that, at these distances and all along the evening sector, there isn't necessarily a strong dependence of the local current density value on the magnetic activity level. This is a direct consequence of the ring current morphology evolution, as well as the relative positioning of the spacecraft with respect to the bulk of the ring current. It also proves the existence of a substantial ring current at these distances, all over the evening and the post-midnight sector. Keywords. Magnetospheric physics (Current systems; Energetic particles, trapped; Magnetospheric configuration and dynamics)


2018 ◽  
Vol 54 (42) ◽  
pp. 5330-5333 ◽  
Author(s):  
Lin Liu ◽  
Ya-Xia Yin ◽  
Jin-Yi Li ◽  
Yu-Guo Guo ◽  
Li-Jun Wan

Well-arranged ladderlike carbon nanoarrays can bring about homogenous Li-ion flux and reduced local current density, thus regulating uniform Li nucleation/growth.


2015 ◽  
Vol 11 (11) ◽  
pp. 5161-5176 ◽  
Author(s):  
Michael Walz ◽  
Alexei Bagrets ◽  
Ferdinand Evers

Sign in / Sign up

Export Citation Format

Share Document