Al addition on the short and medium range order of CuZrAl metallic glasses

2021 ◽  
pp. 413237
Author(s):  
Chunyu Han ◽  
Weiyu Yang ◽  
Yingkun Lan ◽  
Minhua Sun
Nature ◽  
2006 ◽  
Vol 439 (7075) ◽  
pp. 419-425 ◽  
Author(s):  
H. W. Sheng ◽  
W. K. Luo ◽  
F. M. Alamgir ◽  
J. M. Bai ◽  
E. Ma

2012 ◽  
Vol 358 (15) ◽  
pp. 1873-1875 ◽  
Author(s):  
S.P. Pan ◽  
J.Y. Qin ◽  
W.M. Wang ◽  
T.K. Gu

Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1840
Author(s):  
Masato Shimono ◽  
Hidehiro Onodera

The atomic structure of medium-range order in metallic glasses is investigated by using molecular dynamics (MD) simulations. Glass formation processes were simulated by rapid cooling from liquid phases of a model binary alloy system of different-sized elements. Two types of short-range order of atomic clusters with the five-fold symmetry are found in glassy phases: icosahedral clusters (I-clusters) formed around the smaller-sized atoms and Frank–Kasper clusters (i.e., Z14, Z15, and Z16 clusters (Z-clusters)) formed around the bigger-sized atoms. Both types of clusters (I-and Z-clusters) are observed even in liquid phases and the population of them goes up as the temperature goes down. A considerable atomic size difference between alloying elements would enhance the formation of both the I- and Z-clusters. In glassy phases, the I- and Z-clusters are mutually connected to form a complicated network, and the network structure becomes denser as the structural relaxation goes on. In the network, the medium-range order is mainly constructed by the volume sharing type connection between I- and Z-clusters. Following Nelson’s disclination theory, the network structure can be understood as a random network of Z-clusters, which is complimentarily surrounded by another type of network formed by I-clusters.


MRS Bulletin ◽  
2007 ◽  
Vol 32 (8) ◽  
pp. 629-634 ◽  
Author(s):  
Daniel B. Miracle ◽  
Takeshi Egami ◽  
Katharine M. Flores ◽  
Kenneth F. Kelton

AbstractA recent structural model reconciles apparently conflicting features of randomness, short-range order, and medium-range order that coexist in metallic glasses. In this efficient cluster packing model, short-range order can be described by efficiently packed solute-centered clusters, producing more than a dozen established atomic clusters, including icosahedra. The observed preference for icosahedral short-range order in metallic glasses is consistent with the theme of efficient atomic packing and is further favored by solvent-centered clusters. Driven by solute—solute avoidance, medium-range order results from the organization in space of overlapping, percolating (via connected pathways), quasi-equivalent clusters. Cubic-like and icosahedral-like organization of these clusters are consistent with measured medium-range order. New techniques such as fluctuation electron microscopy now provide more detailed experimental studies of medium-range order for comparison with model predictions. Microscopic free volume in the efficient cluster packing model is able to represent experimental and computational results, showing free volume complexes ranging from subatomic to atomic-level sizes. Free volume connects static structural models to dynamic processes such as diffusion and deformation. New approaches dealing with “free” and “anti-free” microscopic volume and coordinated atomic motion show promise for modeling the complex dynamics of structural relaxations such as the glass transition. Future work unifying static and dynamic structural views is suggested.


Sign in / Sign up

Export Citation Format

Share Document