Leakage flux reduction of axial-flux switching PM machine by using HTS-disk

2021 ◽  
Vol 590 ◽  
pp. 1353962
Author(s):  
Nima Arish
Keyword(s):  
2016 ◽  
Vol 26 (7) ◽  
pp. 1-5 ◽  
Author(s):  
Xiaofeng Ding ◽  
Guanliang Liu ◽  
Hong Guo ◽  
Chengming Zhang

Author(s):  
Reza Mirzahosseini ◽  
Ahmad Darabi ◽  
Mohsen Assili

Purpose Consideration of leakage fluxes in the preliminary design stage of a machine is important for accurate determination of machine dimensions and prediction of performance characteristics. This paper aims to obtain some equations for calculating the average air gap flux density, the flux density within the magnet and the air gap leakage flux factor. Design/methodology/approach A detailed magnetic equivalent circuit (MEC) is presented for a TORUS-type non-slotted axial flux permanent magnet (TORUS-NS AFPM) machine. In this MEC, the leakage flux occurring between two adjacent magnets and the leakage fluxes taking place between the magnet and rotor iron at the interpolar, inner and outer edges of the magnets are considered. According to the proposed MEC and by using flux division law, some equations are extracted. A three-dimensional finite element method (FEM) is used to evaluate the proposed analytical equations. The study machine is a 3.7 kW and 1,400 rpm TORUS-NS AFPM machine. Findings The air gap leakage flux factor, the average air gap flux density and the flux density within the magnet are calculated using the proposed equations and FEM. All the results of FEM confirm the excellent accuracy of the proposed analytical method. Originality/value The new equations presented in this paper can be applied for leakage flux evaluating purposes.


Author(s):  
T. Yanaka ◽  
K. Shirota

It is significant to note field aberrations (chromatic field aberration, coma, astigmatism and blurring due to curvature of field, defined by Glaser's aberration theory relative to the Blenden Freien System) of the objective lens in connection with the following three points of view; field aberrations increase as the resolution of the axial point improves by increasing the lens excitation (k2) and decreasing the half width value (d) of the axial lens field distribution; when one or all of the imaging lenses have axial imperfections such as beam deflection in image space by the asymmetrical magnetic leakage flux, the apparent axial point has field aberrations which prevent the theoretical resolution limit from being obtained.


Author(s):  
M. Strojnik

Magnetic lenses operating in partial saturation offer two advantages in HVEM: they exhibit small cs and cc and their power depends little on the excitation IN. Curve H, Fig. 1, shows that the maximal axial flux density Bz max of one of the lenses investigated changes between points (3) and (4) by 5% as the excitation varies by 40%. Consequently, the designer can relax the requirements concerning the stability of the lens current supplies. Saturated lenses, however, can only be used if (i) unwanted fields along the optical axis can be controlled, (ii) 'wobbling' of the optical axis due to inhomogeneous saturation around the pole piece faces is prevented, (iii) ample ampere-turns can be squeezed into the space available, and (iv) the lens operating point covers a sufficient range of accelerating voltages.


Sign in / Sign up

Export Citation Format

Share Document