scholarly journals Numerical bifurcation for the capillary Whitham equation

2017 ◽  
Vol 343 ◽  
pp. 51-62 ◽  
Author(s):  
Filippo Remonato ◽  
Henrik Kalisch

Wave Motion ◽  
2021 ◽  
pp. 102793
Author(s):  
Efstathios G. Charalampidis ◽  
Vera Mikyoung Hur


2021 ◽  
Vol 143 ◽  
pp. 110550
Author(s):  
A. Gevorgian ◽  
N. Kulagin ◽  
L. Lerman ◽  
A. Malkin
Keyword(s):  


1998 ◽  
Vol 167 ◽  
pp. 406-414
Author(s):  
N. Seehafer

AbstractFilaments are a global phenomenon and their formation, structure and dynamics are determined by magnetic fields. So they are an important signature of the solar magnetism. The central mechanism in traditional mean-field dynamo theory is the alpha effect and it is a major result of this theory that the presence of kinetic or magnetic helicities is at least favourable for the effect. Recent studies of the magnetohydrodynamic equations by means of numerical bifurcation-analysis techniques have confirmed the decisive role of helicity for a dynamo effect. The alpha effect corresponds to the simultaneous generation of magnetic helicities in the mean field and in the fluctuations, the generation rates being equal in magnitude and opposite in sign. In the case of statistically stationary and homogeneous fluctuations, in particular, the alpha effect can increase the energy in the mean magnetic field only under the condition that also magnetic helicity is accumulated there. Generally, the two helicities generated by the alpha effect, that in the mean field and that in the fluctuations, have either to be dissipated in the generation region or to be transported out of this region. The latter may lead to the appearance of helicity in the atmosphere, in particular in filaments, and thus provide valuable information on dynamo processes inaccessible to in situ measurements.



2001 ◽  
Vol 11 (03) ◽  
pp. 737-753 ◽  
Author(s):  
TATYANA LUZYANINA ◽  
KOEN ENGELBORGHS ◽  
DIRK ROOSE

In this paper we apply existing numerical methods for bifurcation analysis of delay differential equations with constant delay to equations with state-dependent delay. In particular, we study the computation, continuation and stability analysis of steady state solutions and periodic solutions. We collect the relevant theory and describe open theoretical problems in the context of bifurcation analysis. We present computational results for two examples and compare with analytical results whenever possible.



2014 ◽  
Vol 69 (8-9) ◽  
pp. 489-496 ◽  
Author(s):  
Mir Sajjad Hashemi ◽  
Ali Haji-Badali ◽  
Parisa Vafadar

In this paper, we utilize the Lie symmetry analysis method to calculate new solutions for the Fornberg-Whitham equation (FWE). Applying a reduction method introduced by M. C. Nucci, exact solutions and first integrals of reduced ordinary differential equations (ODEs) are considered. Nonlinear self-adjointness of the FWE is proved and conserved vectors are computed



2010 ◽  
Author(s):  
Nalwala Rohitbabu Gangadhar ◽  
Periyasamy Balasubramanian ◽  
Swapan Paruya ◽  
Samarjit Kar ◽  
Suchismita Roy


Fluids ◽  
2021 ◽  
Vol 6 (11) ◽  
pp. 405
Author(s):  
Nicola Suzzi ◽  
Giulio Croce

The bifurcation analysis of a film falling down an hybrid surface is conducted via the numerical solution of the governing lubrication equation. Instability phenomena, that lead to film breakage and growth of fingers, are induced by multiple contamination spots. Contact angles up to 75∘ are investigated due to the full implementation of the free surface curvature, which replaces the small slope approximation, accurate for film slope lower than 30∘. The dynamic contact angle is first verified with the Hoffman–Voinov–Tanner law in case of a stable film down an inclined plate with uniform surface wettability. Then, contamination spots, characterized by an increased value of the static contact angle, are considered in order to induce film instability and several parametric computations are run, with different film patterns observed. The effects of the flow characteristics and of the hybrid pattern geometry are investigated and the corresponding bifurcation diagram with the number of observed rivulets is built. The long term evolution of induced film instabilities shows a complex behavior: different flow regimes can be observed at the same flow characteristics under slightly different hybrid configurations. This suggest the possibility of controlling the rivulet/film transition via a proper design of the surfaces, thus opening the way for relevant practical application.



2018 ◽  
Vol 38 (3) ◽  
pp. 1605-1613 ◽  
Author(s):  
Günther Hörmann ◽  


Sign in / Sign up

Export Citation Format

Share Document