Energy structure and absorption spectra of colloidal CdS nanocrystals in gelatin matrix

2015 ◽  
Vol 68 ◽  
pp. 159-163 ◽  
Author(s):  
N.V. Korolev ◽  
M.S. Smirnov ◽  
O.V. Ovchinnikov ◽  
T.S. Shatskikh
Author(s):  
Sergei B. Kuschev ◽  
Liana Yu. Leonova ◽  
Anatoly N. Latyshev ◽  
Oleg V. Ovchinnikov ◽  
Elena V. Popova

The effect of photon processing (FO) on the formation of a heterojunction in the TiO2/QD’sCdS interface obtained by applying separately synthesized CdS quantum dots to the TiO2 film in the rutile phase has been studied. The changes of luminescence spectra and absorption of the investigated samples after this treatment discovered. It is shown that the separation of charge carriers occurs only after irradiation of samples with a powerful light pulse of a xenon lamp.   REFERENCES Kapilashrami M., Zhang Y. , Liu Y.-S., Hagfeldt A., Guo J. Probing the Optical Property and Electronic Structure of TiO2 Nanomaterials for Renewable Ener gy Applications. Chem. Rev., 2014, v. 114, pp. 9662–9707.  https://doi.org/10.1021/cr5000893 Dang T. C., Pham D. L., Le H. C., Pham V. H. TiO2/CdS nanocomposite fi lms: fabrication, characterization, electronic and optical properties. Adv. Nat. Sci. Nanosci. Nanotechnol., 2010, v. 1, p. 015002. https://doi.org/10.1088/2043-6254/1/1/015002 Qian X., Qin D., Bai Y., Li T., Tang X., Wang E., Dong S., Photosensitization of TiO2 nanoparticulate thin fi lm electrodes by CdS nanoparticles. J. Solid State Electrochem., 2001, v. 5, pp. 562–567. https://doi.org/10.1007/s100080000179 Baker D. R., Kamat P. V. Photosensitization of TiO2 nanostructures with CdS quantum dots: Particulateversus tubular support architectures. Adv. Funct. Mater., 2009, v. 19, pp. 805–811. https://doi.org/10.1002/adfm.200801173 Cheng S., Fu W., Yang H., Zhang L., Ma J., Zhao H., Sun M., Yang L. Photoelectrochemical performance of multiple semiconductors (CdS/CdSe/ZnS) cosensitized TiO2 photoelectrodes. J. Phys. Chem. C, 2012, v. 116, pp. 2615–2621. https://doi.org/10.1021/jp209258r Khlyap H. Physics and technology of semiconductor thin fi lm-based active elements and devices. Bentham Science Publisher, 2012. https://doi.org/10.2174/97816080502151090101 Milnes A. G., Feucht D. L. Hetero junctions and metal-semiconductor junctions. Academic Press, 418 p. https://doi.org/10.1016/B978-0-12-498050-1.X5001-6 Ievlev V. M., Latyshev A. N., Kovneristyi Y. K., Turaeva T. L., Vavilova V. V., Ovchinnikov O. V., Selivanov V. N., Serbin O. V. Mechanism of the photonic activation of solid-phase processes. High Energy Chem., 2005, v. 39, pp. 397–402. https://doi.org/10.1007/s10733-005-0078-2 Ievlev V. M., Kushchev S. B., Latyshev A. N., Ovchinnikov O. V., Leonova L. Y, Solntsev K. A., Soldatenko S. A., Smirnov M. S., Sinelnikov A. A., Vozgorkov A. M., Ivikova M. A. Relation of absorption band edge of rutile fi lms and their structure. Inorg. Mater. Appl. Res., 2014, v. 5, pp. 14–21. https://doi.org/10.1134/s2075113314010055 Korolev N. V., Smirnov M. S., Ovchinnikov O. V, Shatskikh T.S. Energy structure and absorption spectra of colloidal CdS nanocrystals in gelatin matrix. Phys. E Low-Dimensional Syst. Nanostructures, 2015, v. 68, pp. 159–163. https://doi.org/10.1016/j.physe.2014.10.042. Ghazzal M. N., Wojcieszak R., Raj G., Gaigneaux E.M. Study of mesoporous cds-quantumdot-sensitized TiO2 fi lms by using x-ray photoelectron spectroscopy and afm. Beilstein J. Nanotechnol, 2014, v. 5, pp. 68–76. https://doi.org/10.3762/bjnano.5.6 Ahire R. R., Sagade A. A., Deshpande N. G., Chavhan S. D., Sharma R., Singh F. Engineering of nanocrystalline cadmium sulfi de thin fi lms by using swift heavy ions. J. Phys. D. Appl. Phys., 2007, v. 40, pp. 4850–4854. https://doi.org/10.1088/0022-3727/40/16/014 Ekimov A., Onushchenko A.A. Size quantization of the electron energy spectrum in a microscopic semiconductor crystal. JETP Lett., 1984, v. 40, pp. 1136–1139. Rolo A. G., Stepikhova M. V., Filonovich S. A., Ricolleau C., Vasilevskiy M. I., Gomes M. J. M. Microstructure and photoluminescence of CdS-doped silica fi lms grown by RF magnetron sputtering. Phys. Status Solidi Basic Res., 2002, v. 232, pp. 44–49. https://doi.org/10.1002/1521-3951(200207)232:1<44::AIDPSSB44> 3.0.CO;2-4 Smyntyna V., Skobeeva V., Malushin N. The nature of emission centers in CdS nanocrystals, Radiat. Meas., 2007, v. 42, pp. 693–696. https://doi.org/10.1016/j.radmeas.2007.01.068 Ehemba A. K., Socé M. M., Domingo J. J., Cisse S., Dieng M. Optimization of the properties of the back surface fi eld of a Cu (In, Ga) Se2 thin fi lm solar cell. American Journal of Energy Research, 2017, v. 5(2), pp. 57–62. https://doi.org/10.12691/ajer-5-2-5  


Author(s):  
Katherine E. Shulenberger ◽  
Helena R. Keller ◽  
Lauren M. Pellows ◽  
Niamh L. Brown ◽  
Gordana Dukovic

2009 ◽  
Vol 113 (18) ◽  
pp. 7579-7593 ◽  
Author(s):  
Jianying Ouyang ◽  
Jasmijn Kuijper ◽  
Simon Brot ◽  
David Kingston ◽  
Xiaohua Wu ◽  
...  

1988 ◽  
Vol 102 ◽  
pp. 243-246
Author(s):  
J.T. Costello ◽  
W.G. Lynam ◽  
P.K. Carroll

AbstractThe dual laser-produced plasma technique for the study of ionic absorption spectra has been developed by the use of two Q-switched ruby lasers to enable independent generation of the absorbing and back-lighting plasmas. Optical pulse handling is used in the coupling cicuits to enable reproducible pulse delays from 250 nsec. to 10 msec, to be achieved. At delay times &gt; 700 nsec. spectra of essentially pure neutral species are observed. The technique is valuable, not only for obtaining the neutral spectra of highly refractory and/or corrosive materials but also for studying behaviour of ionic species as a function of time. Typical spectra are shown in Fig. 1.


1988 ◽  
Vol 102 ◽  
pp. 71-73
Author(s):  
E. Jannitti ◽  
P. Nicolosi ◽  
G. Tondello

AbstractThe photoabsorption spectra of the carbon ions have been obtained by using two laser-produced plasmas. The photoionization cross-section of the CV has been absolutely measured and the value at threshold, σ=(4.7±0.5) × 10−19cm2, as well as its behaviour at higher energies agrees quite well with the theoretical calculations.


1996 ◽  
Vol 88 (1) ◽  
pp. 281-290 ◽  
Author(s):  
HAO WEN ◽  
TIANJING HE ◽  
CUNYI XU ◽  
JIAN ZUO ◽  
FAN-CHEN LIU

Sign in / Sign up

Export Citation Format

Share Document