High strain rate sensitivity of hardness in quinary Ti-Zr-Hf-Cu-Ni high entropy metallic glass thin films

2017 ◽  
Vol 94 ◽  
pp. 100-105 ◽  
Author(s):  
Shaofan Zhao ◽  
Haibin Wang ◽  
Lin Xiao ◽  
Nan Guo ◽  
Delin Zhao ◽  
...  
Author(s):  
Rajaprakash Ramachandramoorthy ◽  
Fan Yang ◽  
Daniele Casari ◽  
Moritz Stolpe ◽  
Manish Jain ◽  
...  

Abstract High strain rate micromechanical testing can assist researchers in elucidating complex deformation mechanisms in advanced material systems. In this work, the interactions of atomic-scale chemistry and strain rate in affecting the deformation response of a Zr-based metallic glass was studied by varying the concentration of oxygen dissolved into the local structure. Compression of micropillars over six decades of strain rate uncovered a remarkable reversal of the strain rate sensitivity from negative to positive above ~ 5 s−1 due to a delocalisation of shear transformation events within the pre-yield linear regime for both samples, while a higher oxygen content was found to generally decrease the strain rate sensitivity effect. It was also identified that the shear band propagation speed increases with the actuation speed, leading to a transition in the deformation behaviour from serrated to apparent non-serrated plastic flow at ~ 5 s−1. Graphic abstract


2008 ◽  
Vol 385-387 ◽  
pp. 873-876
Author(s):  
Fang Jiang ◽  
Dong Zhao ◽  
Jian Guo Ning

The tensile properties of a titanium alloy reinforced with 3% by volume fraction of TiC particles and of an unreinforced titanium alloy are studied over a range of strain rates from 0.0001s-1 to 1300s-1 using quasi-static material testing system (MTS810) and split Hopkinson tensile bar apparatus. The experimental results show that both the TiCp/Ti composite and its matrix alloy exhibit an obvious strain-rate hardening property. But the high strain-rate sensitivity of the TiCp/Ti composite is significantly higher than that of the matrix. The high strain-rate sensitivity of the TiCp/Ti composite is considered to be originated from the high dislocation accumulation rate during dynamic deformation and the constraint of TiC particles on the surrounding matrix, which dramatically enhances rate of the matrix. Finally, a phenomenological dynamic constitutive relation is established considering the composite is elastic-perfectly plastic material.


Metals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1153
Author(s):  
Ping Song ◽  
Wen-Bin Li ◽  
Yu Zheng ◽  
Jiu-Peng Song ◽  
Xiang-Cao Jiang ◽  
...  

This study investigated the deformation behavior of the Mo-10Ta alloy with a strain rate range of 102–105 s−1. The Split Hopkinson pressure bar (SHPB) experiments were conducted to investigate the influence of deformation conditions on the stress-strain relationship and strain rate sensitivity of the material within a strain rate range of 0.001–4500 s−1. The Shaped Charge Jet (SCJ) forming experiments under detonation loading was conducted to clarify the dynamic response and microstructure evolution of the material within an ultra-high strain rates range of 104–105 s−1. Based on the stress-strain relationship of Mo-10Ta alloy at high temperature (286–873 K) and high strain rate (460–4500 s−1), the influence of temperature and strain rate on the activation energy Q was analyzed. The results indicate that the material strain rate sensitivity increased with the increase in strain rate and strain. Meanwhile, the activation energy Q decreased as the temperature and strain rate increased. The plasticity of the Mo-10Ta alloy under the condition of SCJ forming was substantially enhanced compared with that under quasi-static deformation. The material grain was also refined under ultra-high strain rate, as reflected by the reduction in grain size from 232 μm to less than 10 μm.


Sign in / Sign up

Export Citation Format

Share Document