Affordable clinical gait analysis: An assessment of the marker tracking accuracy of a new low-cost optical 3D motion analysis system

Physiotherapy ◽  
2013 ◽  
Vol 99 (4) ◽  
pp. 347-351 ◽  
Author(s):  
Bruce Carse ◽  
Barry Meadows ◽  
Roy Bowers ◽  
Philip Rowe
2015 ◽  
Vol 25 (5) ◽  
pp. 808-814 ◽  
Author(s):  
Sander Schreven ◽  
Peter J. Beek ◽  
Jeroen B.J. Smeets

Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2518 ◽  
Author(s):  
Fuengfa Khobkhun ◽  
Mark A. Hollands ◽  
Jim Richards ◽  
Amornpan Ajjimaporn

Camera-based 3D motion analysis systems are considered to be the gold standard for movement analysis. However, using such equipment in a clinical setting is prohibitive due to the expense and time-consuming nature of data collection and analysis. Therefore, Inertial Measurement Units (IMUs) have been suggested as an alternative to measure movement in clinical settings. One area which is both important and challenging is the assessment of turning kinematics in individuals with movement disorders. This study aimed to validate the use of IMUs in the measurement of turning kinematics in healthy adults compared to a camera-based 3D motion analysis system. Data were collected from twelve participants using a Vicon motion analysis system which were compared with data from four IMUs placed on the forehead, middle thorax, and feet in order to determine accuracy and reliability. The results demonstrated that the IMU sensors produced reliable kinematic measures and showed excellent reliability (ICCs 0.80–0.98) and no significant differences were seen in paired t-tests in all parameters when comparing the two systems. This suggests that the IMU sensors provide a viable alternative to camera-based motion capture that could be used in isolation to gather data from individuals with movement disorders in clinical settings and real-life situations.


1994 ◽  
Author(s):  
Jan C. Sabel ◽  
Hans L. J. van Veenendaal ◽  
E. Hans Furnee

2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Tzyy-Yuang Shiang ◽  
Tsung-Yu Hsieh ◽  
Yin-Shin Lee ◽  
Chen-Chi Wu ◽  
Meng-Chieh Yu ◽  
...  

From biomechanical point of view, strike pattern plays an important role in preventing potential injury risk in running. Traditionally, strike pattern determination was conducted by using 3D motion analysis system with cameras. However, the procedure is costly and not convenient. With the rapid development of technology, sensors have been applied in sport science field lately. Therefore, this study was designed to determine the algorithm that can identify landing strategies with a wearable sensor. Six healthy male participants were recruited to perform heel and forefoot strike strategies at 7, 10, and 13 km/h speeds. The kinematic data were collected by Vicon 3D motion analysis system and 2 inertial measurement units (IMU) attached on the dorsal side of both shoes. The data of each foot strike were gathered for pitch angle and strike index analysis. Comparing the strike index from IMU with the pitch angle from Vicon system, our results showed that both signals exhibited highly correlated changes between different strike patterns in the sagittal plane (r=0.98). Based on the findings, the IMU sensors showed potential capabilities and could be extended beyond the context of sport science to other fields, including clinical applications.


2013 ◽  
Vol 284-287 ◽  
pp. 1996-2000 ◽  
Author(s):  
Hai Trieu Pham ◽  
Jung Ja Kim ◽  
Yong Gwan Won

Many motion analysis systems which have been introduced in the past few years are currently receiving interests from researchers and developers due to their usefulness and wide application capability in the future. However, many of those systems meet with difficulties for the real applications because of high cost for the implementation and less accuracy. This paper introduces a new 3D motion analysis system which can be implemented at a lower cost and acceptable accuracy for various applications. The key component of our new system is the use of the MSK (Microsoft Kinect) sensor system which is equipped with both visual camera and infrared camera. It can provide the color image, the 3D depth image and the 3D skeleton data without wearing any marker device on the human body while it can provide acceptable accuracy in 3D motion trace at low cost. Our system can be exploited for a base framework for various 3D motion-based applications such as physical rehabilitation support, sport motion analysis and biomechanical applications.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 597
Author(s):  
Ae-Ryeong Kim ◽  
Ju-Hyun Park ◽  
Si-Hyun Kim ◽  
Kwang Bok Kim ◽  
Kyue-Nam Park

The present study was performed to investigate the validity of a wireless earbud-type inertial measurement unit (Ear-IMU) sensor used to estimate head angle during four workouts. In addition, relationships between head angle obtained from the Ear-IMU sensor and the angles of other joints determined with a 3D motion analysis system were investigated. The study population consisted of 20 active volunteers. The Ear-IMU sensor measured the head angle, while a 3D motion analysis system simultaneously measured the angles of the head, trunk, pelvis, hips, and knees during workouts. Comparison with the head angle measured using the 3D motion analysis system indicated that the validity of the Ear-IMU sensor was very strong or moderate in the sagittal and frontal planes. In addition, the trunk angle in the frontal plane showed a fair correlation with the head angle determined with the Ear-IMU sensor during a single-leg squat, reverse lunge, and standing hip abduction; the correlation was poor in the sagittal plane. Our results indicated that the Ear-IMU sensor can be used to directly estimate head motion and indirectly estimate trunk motion.


Sign in / Sign up

Export Citation Format

Share Document