Gaussian Klauder coherent states of general time-dependent harmonic oscillator

2004 ◽  
Vol 325 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Jeong-Ryeol Choi
1993 ◽  
Vol 07 (28) ◽  
pp. 4827-4840 ◽  
Author(s):  
DONALD H. KOBE ◽  
JIONGMING ZHU

The most general time-dependent Hamiltonian for a harmonic oscillator is both linear and quadratic in the coordinate and the canonical momentum. It describes in general a harmonic oscillator with mass, spring “constant,” and friction (or antifriction) “constant,” all of which are time dependent, that is acted on by a time-dependent force. A generalized Hannay angle, which is gauge invariant, is defined by making a distinction between the Hamiltonian and the energy. The generalized Hannay angle is the classical counterpart of the generalized Berry phase in quantum theory. When friction is present the generalized Hannay angle is nonzero. If the Hamiltonian is (incorrectly) chosen to be the energy, the generalized Hannay angle is different. Nevertheless, in the adiabatic case the same total angle is obtained.


2014 ◽  
Vol 28 (26) ◽  
pp. 1450177 ◽  
Author(s):  
I. A. Pedrosa ◽  
D. A. P. de Lima

In this paper, we study the generalized harmonic oscillator with arbitrary time-dependent mass and frequency subjected to a linear velocity-dependent frictional force from classical and quantum points of view. We obtain the solution of the classical equation of motion of this system for some particular cases and derive an equation of motion that describes three different systems. Furthermore, with the help of the quantum invariant method and using quadratic invariants we solve analytically and exactly the time-dependent Schrödinger equation for this system. Afterwards, we construct coherent states for the quantized system and employ them to investigate some of the system's quantum properties such as quantum fluctuations of the coordinate and the momentum as well as the corresponding uncertainty product. In addition, we derive the geometric, dynamical and Berry phases for this nonstationary system. Finally, we evaluate the dynamical and Berry phases for three special cases and surprisingly find identical expressions for the dynamical phase and the same formulae for the Berry's phase.


1994 ◽  
Vol 08 (29) ◽  
pp. 1823-1831 ◽  
Author(s):  
SALVATORE DE MARTINO ◽  
SILVIO DE SIENA ◽  
FABRIZIO ILLUMINATI

In the framework of the stochastic formulation of quantum mechanics we derive non-stationary states for a class of time-dependent potentials. The wave packets follow a classical motion with constant dispersion. The new states define a possible extension of the harmonic oscillator coherent states. As an explicit application, we study a sestic oscillator potential.


1994 ◽  
Vol 08 (14n15) ◽  
pp. 917-927 ◽  
Author(s):  
A. JOSHI ◽  
S. V. LAWANDE

In this paper we investigate the time evolution of a general time-dependent harmonic oscillator (TDHO) with variable mass using Feynman path integral approach. We explicitly evaluate the squeezing in the quadrature components of a general quantum TDHO with variable mass. This calculation is further elaborated for three particular cases of variable mass whose propagator can be written in a closed form. We also obtain an exact form of the time-evolution operator, the wave function, and the time-dependent coherent state for the TDHO. Our results clearly indicate that the time-dependent coherent state is equivalent to the squeezed coherent state.


Sign in / Sign up

Export Citation Format

Share Document