Sensitivity of the power-law exponent in gene expression distribution to mRNA decay rate

2006 ◽  
Vol 360 (1) ◽  
pp. 174-178 ◽  
Author(s):  
J.C. Nacher ◽  
T. Akutsu
2018 ◽  
Vol 32 (7) ◽  
pp. 866-872 ◽  
Author(s):  
Swagat Patnaik ◽  
Basudev Biswal ◽  
Dasika Nagesh Kumar ◽  
Bellie Sivakumar

2005 ◽  
Vol 73 (3) ◽  
pp. 461-468 ◽  
Author(s):  
Timothy T. Clark ◽  
Ye Zhou

The Richtmyer-Meshkov mixing layer is initiated by the passing of a shock over an interface between fluid of differing densities. The energy deposited during the shock passage undergoes a relaxation process during which the fluctuational energy in the flow field decays and the spatial gradients of the flow field decrease in time. This late stage of Richtmyer-Meshkov mixing layers is studied from the viewpoint of self-similarity. Analogies with weakly anisotropic turbulence suggest that both the bubble-side and spike-side widths of the mixing layer should evolve as power-laws in time, with the same power-law exponent and virtual time origin for both sides. The analogy also bounds the power-law exponent between 2∕7 and 1∕2. It is then shown that the assumption of identical power-law exponents for bubbles and spikes yields fits that are in good agreement with experiment at modest density ratios.


2015 ◽  
Vol 25 (07) ◽  
pp. 1540008
Author(s):  
Peijiang Liu ◽  
Zhanjiang Yuan ◽  
Lifang Huang ◽  
Tianshou Zhou

Gene expression is inherently noisy, implying that the number of mRNAs or proteins is not invariant rather than follows a distribution. This distribution can not only provide the exact information on the dynamics of gene expression but also describe cell-to-cell variability in a genetically identical cell population. Here, we systematically investigate a two-state model of gene expression, a model paradigm used to study expression dynamics, focusing on the effect of feedback on the type of mRNA or protein distribution. If there is no feedback, then the distribution may be bimodal, power-law tailed, or Poisson-like, depending on gene switching rates. However, we find that feedback can tune or change the type of the distribution in each case and tends to unimodalize the distribution as its strength increases. Specifically, positive feedback can change not only a power-law tailed distribution into a bimodal or Poisson-like distribution but also a bimodal distribution into a Poisson-like distribution (implying that stochastic bifurcation can take place). In addition, it can make a Poisson-like distribution become more peaked but does not change the type of this distribution. In contrast to positive feedback, negative feedback has less influence on the shape of the distributions except for the bimodal case. In all cases, the noise-feedback curve used extensively in previous studies cannot well reflect the feedback-induced changes in the shape of distributions. Feedback-induced variations in distribution would be important for cell survival in fluctuating environments.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
J. Prakash ◽  
S. Gouse Mohiddin ◽  
S. Vijaya Kumar Varma

A numerical study of buoyancy-driven unsteady natural convection boundary layer flow past a vertical cone embedded in a non-Darcian isotropic porous regime with transverse magnetic field applied normal to the surface is considered. The heat and mass flux at the surface of the cone is modeled as a power law according to qwx=xm and qw*(x)=xm, respectively, where x denotes the coordinate along the slant face of the cone. Both Darcian drag and Forchheimer quadratic porous impedance are incorporated into the two-dimensional viscous flow model. The transient boundary layer equations are then nondimensionalized and solved by the Crank-Nicolson implicit difference method. The velocity, temperature, and concentration fields have been studied for the effect of Grashof number, Darcy number, Forchheimer number, Prandtl number, surface heat flux power-law exponent (m), surface mass flux power-law exponent (n), Schmidt number, buoyancy ratio parameter, and semivertical angle of the cone. Present results for selected variables for the purely fluid regime are compared with the published results and are found to be in excellent agreement. The local skin friction, Nusselt number, and Sherwood number are also analyzed graphically. The study finds important applications in geophysical heat transfer, industrial manufacturing processes, and hybrid solar energy systems.


2008 ◽  
Vol 28 (13) ◽  
pp. 4320-4330 ◽  
Author(s):  
Arneet L. Saltzman ◽  
Yoon Ki Kim ◽  
Qun Pan ◽  
Matthew M. Fagnani ◽  
Lynne E. Maquat ◽  
...  

ABSTRACT Alternative splicing (AS) can regulate gene expression by introducing premature termination codons (PTCs) into spliced mRNA that subsequently elicit transcript degradation by the nonsense-mediated mRNA decay (NMD) pathway. However, the range of cellular functions controlled by this process and the factors required are poorly understood. By quantitative AS microarray profiling, we find that there are significant overlaps among the sets of PTC-introducing AS events affected by individual knockdown of the three core human NMD factors, Up-Frameshift 1 (UPF1), UPF2, and UPF3X/B. However, the levels of some PTC-containing splice variants are less or not detectably affected by the knockdown of UPF2 and/or UPF3X, compared with the knockdown of UPF1. The intron sequences flanking the affected alternative exons are often highly conserved, suggesting important regulatory roles for these AS events. The corresponding genes represent diverse cellular functions, and surprisingly, many encode core spliceosomal proteins and assembly factors. We further show that conserved, PTC-introducing AS events are enriched in genes that encode core spliceosomal proteins. Where tested, altering the expression levels of these core spliceosomal components affects the regulation of PTC-containing splice variants from the corresponding genes. Together, our results show that AS-coupled NMD can have different UPF factor requirements and is likely to regulate many general components of the spliceosome. The results further implicate general spliceosomal components in AS regulation.


1998 ◽  
Vol 5 (2) ◽  
pp. 93-104 ◽  
Author(s):  
D. Harris ◽  
M. Menabde ◽  
A. Seed ◽  
G. Austin

Abstract. The theory of scale similarity and breakdown coefficients is applied here to intermittent rainfall data consisting of time series and spatial rain fields. The probability distributions (pdf) of the logarithm of the breakdown coefficients are the principal descriptor used. Rain fields are distinguished as being either multiscaling or multiaffine depending on whether the pdfs of breakdown coefficients are scale similar or scale dependent, respectively. Parameter  estimation techniques are developed which are applicable to both multiscaling and multiaffine fields. The scale parameter (width), σ, of the pdfs of the log-breakdown coefficients is a measure of the intermittency of a field. For multiaffine fields, this scale parameter is found to increase with scale in a power-law fashion consistent with a bounded-cascade picture of rainfall modelling. The resulting power-law exponent, H, is indicative of the smoothness of the field. Some details of breakdown coefficient analysis are addressed and a theoretical link between this analysis and moment scaling analysis is also presented. Breakdown coefficient properties of cascades are also investigated in the context of parameter estimation for modelling purposes.


Sign in / Sign up

Export Citation Format

Share Document