Note on a universal quantum Turing machine

2008 ◽  
Vol 372 (31) ◽  
pp. 5120-5122 ◽  
Author(s):  
Satoshi Iriyama ◽  
Takayuki Miyadera ◽  
Masanori Ohya
Author(s):  
Songsong Dai

In this paper, we give a definition for quantum information distance. In the classical setting, information distance between two classical strings is developed based on classical Kolmogorov complexity. It is defined as the length of a shortest transition program between these two strings in a universal Turing machine. We define the quantum information distance based on Berthiaume et al.’s quantum Kolmogorov complexity. The quantum information distance between qubit strings is defined as the length of the shortest quantum transition program between these two qubit strings in a universal quantum Turing machine. We show that our definition of quantum information distance is invariant under the choice of the underlying quantum Turing machine.


Author(s):  
Abel Molina ◽  
John Watrous

Yao's 1995 publication ‘Quantum circuit complexity’ in Proceedings of the 34th Annual IEEE Symposium on Foundations of Computer Science , pp. 352–361, proved that quantum Turing machines and quantum circuits are polynomially equivalent computational models: t ≥ n steps of a quantum Turing machine running on an input of length n can be simulated by a uniformly generated family of quantum circuits with size quadratic in t , and a polynomial-time uniformly generated family of quantum circuits can be simulated by a quantum Turing machine running in polynomial time. We revisit the simulation of quantum Turing machines with uniformly generated quantum circuits, which is the more challenging of the two simulation tasks, and present a variation on the simulation method employed by Yao together with an analysis of it. This analysis reveals that the simulation of quantum Turing machines can be performed by quantum circuits having depth linear in t , rather than quadratic depth, and can be extended to variants of quantum Turing machines, such as ones having multi-dimensional tapes. Our analysis is based on an extension of method described by Arright, Nesme and Werner in 2011 in Journal of Computer and System Sciences 77 , 372–378. ( doi:10.1016/j.jcss.2010.05.004 ), that allows for the localization of causal unitary evolutions.


2008 ◽  
Vol 22 (12) ◽  
pp. 1203-1210 ◽  
Author(s):  
CAROLINE ROGERS ◽  
VLATKO VEDRAL

The Kolmogorov complexity of a physical state is the minimal physical resources required to reproduce that state. We define a second quantized quantum Turing machine and use it to define second quantized Kolmogorov complexity. There are two advantages to our approach — our measure of the second quantized Kolmogorov complexity is closer to physical reality and unlike other quantum Kolmogorov complexities, it is continuous. We give examples where the second quantized and quantum Kolmogorov complexity differ.


2020 ◽  
Author(s):  
Vasil Penchev

<div>Pattern recognition is represented as the limit, to which an infinite Turing process converges. A Turing machine, in which the bits are substituted with qubits, is introduced. That quantum Turing machine can recognize two complementary patterns in any data. That ability of universal pattern recognition is interpreted as an intellect featuring any quantum computer. The property is valid only within a quantum computer: To utilize it, the observer should be sited inside it. Being outside it, the observer would obtain quite different result depending on the degree of the entanglement of the quantum computer and observer. All extraordinary properties of a quantum computer are due to involving a converging infinite computational process contenting necessarily both a continuous advancing calculation and a leap to the limit. Three types of quantum computation can be distinguished according to whether the series is a finite one, an infinite rational or irrational number.</div>


It is argued that underlying the Church–Turing hypothesis there is an implicit physical assertion. Here, this assertion is presented explicitly as a physical principle: ‘every finitely realizible physical system can be perfectly simulated by a universal model computing machine operating by finite means’. Classical physics and the universal Turing machine, because the former is continuous and the latter discrete, do not obey the principle, at least in the strong form above. A class of model computing machines that is the quantum generalization of the class of Turing machines is described, and it is shown that quantum theory and the 'universal quantum computer’ are compatible with the principle. Computing machines resembling the universal quantum computer could, in principle, be built and would have many remarkable properties not reproducible by any Turing machine. These do not include the computation of non-recursive functions, but they do include ‘quantum parallelism’, a method by which certain probabilistic tasks can be performed faster by a universal quantum computer than by any classical restriction of it. The intuitive explanation of these properties places an intolerable strain on all interpretations of quantum theory other than Everett’s. Some of the numerous connections between the quantum theory of computation and the rest of physics are explored. Quantum complexity theory allows a physically more reasonable definition of the ‘complexity’ or ‘knowledge’ in a physical system than does classical complexity theory.


Sign in / Sign up

Export Citation Format

Share Document