scholarly journals Revisiting the simulation of quantum Turing machines by quantum circuits

Author(s):  
Abel Molina ◽  
John Watrous

Yao's 1995 publication ‘Quantum circuit complexity’ in Proceedings of the 34th Annual IEEE Symposium on Foundations of Computer Science , pp. 352–361, proved that quantum Turing machines and quantum circuits are polynomially equivalent computational models: t ≥ n steps of a quantum Turing machine running on an input of length n can be simulated by a uniformly generated family of quantum circuits with size quadratic in t , and a polynomial-time uniformly generated family of quantum circuits can be simulated by a quantum Turing machine running in polynomial time. We revisit the simulation of quantum Turing machines with uniformly generated quantum circuits, which is the more challenging of the two simulation tasks, and present a variation on the simulation method employed by Yao together with an analysis of it. This analysis reveals that the simulation of quantum Turing machines can be performed by quantum circuits having depth linear in t , rather than quadratic depth, and can be extended to variants of quantum Turing machines, such as ones having multi-dimensional tapes. Our analysis is based on an extension of method described by Arright, Nesme and Werner in 2011 in Journal of Computer and System Sciences 77 , 372–378. ( doi:10.1016/j.jcss.2010.05.004 ), that allows for the localization of causal unitary evolutions.

2005 ◽  
Vol 70 (3) ◽  
pp. 861-878
Author(s):  
Till Tantau

AbstractKummer's Cardinality Theorem states that a language A must be recursive if a Turing machine can exclude for any n words , …, one of the n + 1 possibilities for the cardinality of {, …, }⋂ A. There was good reason to believe that this theorem is a peculiarity of recursion theory: neither the Cardinality Theorem nor weak forms of it hold for resource-bounded computational models like polynomial time. This belief may be flawed. In this paper it is shown that weak cardinality theorems hold for finite automata and also for other models. An explanation is proposed as to why recursion-theoretic and automata-theoretic weak cardinality theorems hold, but not corresponding 'middle-ground theorems': The recursion- and automata-theoretic weak cardinality theorems are instantiations of purely logical weak cardinality theorems. The logical theorems can be instantiated for logical structures characterizing recursive computations and finite automata computations. A corresponding structure characterizing polynomial time computations does not exist.


2011 ◽  
Vol 59 (3) ◽  
pp. 305-324 ◽  
Author(s):  
J. Miszczak

Models of quantum computation and quantum programming languagesThe goal of the presented paper is to provide an introduction to the basic computational models used in quantum information theory. We review various models of quantum Turing machine, quantum circuits and quantum random access machine (QRAM) along with their classical counterparts. We also provide an introduction to quantum programming languages, which are developed using the QRAM model. We review the syntax of several existing quantum programming languages and discuss their features and limitations.


2010 ◽  
Vol 08 (05) ◽  
pp. 807-819
Author(s):  
YU TANAKA

To understand quantum gate array complexity, we define a problem named exact non-identity check, which is a decision problem to determine whether a given classical description of a quantum circuit is strictly equivalent to the identity or not. We show that the computational complexity of this problem is non-deterministic quantum polynomial-time (NQP)-complete. As corollaries, it is derived that exact non-equivalence check of two given classical descriptions of quantum circuits is also NQP-complete and that minimizing the number of quantum gates for a given quantum circuit without changing the implemented unitary operation is NQP-hard.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
J.-H. Bae ◽  
Paul M. Alsing ◽  
Doyeol Ahn ◽  
Warner A. Miller

Abstract Every quantum algorithm is represented by set of quantum circuits. Any optimization scheme for a quantum algorithm and quantum computation is very important especially in the arena of quantum computation with limited number of qubit resources. Major obstacle to this goal is the large number of elemental quantum gates to build even small quantum circuits. Here, we propose and demonstrate a general technique that significantly reduces the number of elemental gates to build quantum circuits. This is impactful for the design of quantum circuits, and we show below this could reduce the number of gates by 60% and 46% for the four- and five-qubit Toffoli gates, two key quantum circuits, respectively, as compared with simplest known decomposition. Reduced circuit complexity often goes hand-in-hand with higher efficiency and bandwidth. The quantum circuit optimization technique proposed in this work would provide a significant step forward in the optimization of quantum circuits and quantum algorithms, and has the potential for wider application in quantum computation.


2016 ◽  
Vol 16 (3&4) ◽  
pp. 251-270 ◽  
Author(s):  
Yasuhiro Takahashi ◽  
Seiichiro Tani ◽  
Takeshi Yamazaki ◽  
Kazuyuki Tanaka

We study the classical simulatability of commuting quantum circuits with n input qubits and O(log n) output qubits, where a quantum circuit is classically simulatable if its output probability distribution can be sampled up to an exponentially small additive error in classical polynomial time. Our main result is that there exists a commuting quantum circuit that is not classically simulatable unless the polynomial hierarchy collapses to the third level. This is the first formal evidence that a commuting quantum circuit is not classically simulatable even when the number of output qubits is O(log n). Then, we consider a generalized version of the circuit and clarify the condition under which it is classically simulatable. Lastly, using a proof similar to that of the main result, we provide an evidence that a slightly extended Clifford circuit is not classically simulatable.


Axioms ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 304
Author(s):  
Florin Manea

In this paper we propose and analyse from the computational complexity point of view several new variants of nondeterministic Turing machines. In the first such variant, a machine accepts a given input word if and only if one of its shortest possible computations on that word is accepting; on the other hand, the machine rejects the input word when all the shortest computations performed by the machine on that word are rejecting. We are able to show that the class of languages decided in polynomial time by such machines is PNP[log]. When we consider machines that decide a word according to the decision taken by the lexicographically first shortest computation, we obtain a new characterization of PNP. A series of other ways of deciding a language with respect to the shortest computations of a Turing machine are also discussed.


2009 ◽  
Vol 16 (02n03) ◽  
pp. 195-204
Author(s):  
Satoshi Iriyama ◽  
Masanori Ohya

Ohya and Volovich discussed a quantum algorithm for the SAT problem with a chaos amplification process (OMV SAT algorithm) and showed that the number of steps it performed was polynomial in input size. In this paper, we define a generalized quantum Turing machine (GQTM) and related computational complexity. Then we show that there exists a GQTM which recognizes the SAT problem in polynomial time. Moreover, we discuss the problem of finding the quantum algorithm for a partial recursive function.


2008 ◽  
Vol 15 (04) ◽  
pp. 383-396 ◽  
Author(s):  
Satoshi Iriyama ◽  
Masanori Ohya

Ohya and Volovich proposed a quantum algorithm with chaotic amplification to solve the SAT problem, which went beyond the notion of the usual quantum algorithm. In this paper, we generalize quantum Turing machines by rewriting the usual quantum Turing automaton in terms of a channel transformation. Moreover, we define some computational classes of generalized quantum Turing machines and show that we can describe the Ohya-Volovich (OV) SAT algorithm with completely positive channels.


Author(s):  
Raymundo Morado ◽  
Francisco Hernández-Quiroz

Turing machines as a model of intelligence can be motivated under some assumptions, both mathematical and philosophical. Some of these are about the possibility, the necessity, and the limits of representing problem solving by mechanical means. The assumptions about representation that we consider in this paper are related to information representability and availability, processing as solving, nonessentiality of complexity issues, and finiteness, discreteness and sequentiality of the representation. We discuss these assumptions and particularly something that might happen if they were to be rejected or weakened. Tinkering with these assumptions sheds light on the import of alternative computational models.


2021 ◽  
Vol 20 (7) ◽  
Author(s):  
Ismail Ghodsollahee ◽  
Zohreh Davarzani ◽  
Mariam Zomorodi ◽  
Paweł Pławiak ◽  
Monireh Houshmand ◽  
...  

AbstractAs quantum computation grows, the number of qubits involved in a given quantum computer increases. But due to the physical limitations in the number of qubits of a single quantum device, the computation should be performed in a distributed system. In this paper, a new model of quantum computation based on the matrix representation of quantum circuits is proposed. Then, using this model, we propose a novel approach for reducing the number of teleportations in a distributed quantum circuit. The proposed method consists of two phases: the pre-processing phase and the optimization phase. In the pre-processing phase, it considers the bi-partitioning of quantum circuits by Non-Dominated Sorting Genetic Algorithm (NSGA-III) to minimize the number of global gates and to distribute the quantum circuit into two balanced parts with equal number of qubits and minimum number of global gates. In the optimization phase, two heuristics named Heuristic I and Heuristic II are proposed to optimize the number of teleportations according to the partitioning obtained from the pre-processing phase. Finally, the proposed approach is evaluated on many benchmark quantum circuits. The results of these evaluations show an average of 22.16% improvement in the teleportation cost of the proposed approach compared to the existing works in the literature.


Sign in / Sign up

Export Citation Format

Share Document