scholarly journals Bi-large neutrino mixing and CP violation in an SO(10) SUSY GUT for fermion masses

2005 ◽  
Vol 622 (3-4) ◽  
pp. 327-338 ◽  
Author(s):  
R. Dermíšek ◽  
S. Raby
1998 ◽  
Vol 13 (29) ◽  
pp. 5037-5074 ◽  
Author(s):  
C. D. FROGGATT ◽  
M. GIBSON ◽  
H. B. NIELSEN ◽  
D. J. SMITH

The fermion masses and mixing angles are fitted using only three free parameters in a nonsupersymmetric extension of the Standard Model, with new, approximately conserved chiral gauge quantum numbers broken by a set of Higgs fields. The fundamental mass scale of this anti-grand-unification model is given by the Planck mass. We also calculate neutrino mixing angles and masses, as well as CP violation from the CKM matrix. A good fit to the observed fermion masses is obtained, but our predictions of the neutrino masses are too small to lead to any observable neutrino oscillation effects claimed today, without introducing another mass scale. We also give some arguments in support of this type of model based on the observed fermion masses.


2015 ◽  
Vol 30 (21) ◽  
pp. 1550117 ◽  
Author(s):  
Vo Van Vien ◽  
Hoang Ngoc Long

We propose a 3-3-1 model with neutral fermions based on [Formula: see text] flavor symmetry responsible for fermion masses and mixings with nonzero [Formula: see text]. To get realistic neutrino mixing, we just add a new [Formula: see text] triplet being in [Formula: see text] under [Formula: see text]. The neutrinos get small masses from two [Formula: see text] antisextets and one [Formula: see text] triplet. The model can fit the present data on neutrino masses and mixing as well as the effective mass governing neutrinoless double beta decay. Our results show that the neutrino masses are naturally small and a little deviation from the tri-bimaximal neutrino mixing form can be realized. The Dirac CP violation phase [Formula: see text] is predicted to either [Formula: see text] or [Formula: see text] with [Formula: see text].


2013 ◽  
Vol 726 (1-3) ◽  
pp. 356-363 ◽  
Author(s):  
Teruyuki Kitabayashi ◽  
Masaki Yasuè
Keyword(s):  

2019 ◽  
Vol 206 ◽  
pp. 09009
Author(s):  
Ha Nguyen Thi Kim ◽  
Van Nguyen Thi Hong ◽  
Son Cao Van

Neutrinos are neutral leptons and there exist three types of neutrinos (electron neutrinos νe, muon neutrinos νµ and tau neutrinos ντ). These classifications are referred to as neutrinos’s “flavors”. Oscillations between the different flavors are known as neutrino oscillations, which occurs when neutrinos have mass and non-zero mixing. Neutrino mixing is governed by the PMNS mixing matrix. The PMNS mixing matrix is constructed as the product of three independent rotations. With that, we can describe the numerical parameters of the matrix in a graphical form called the unitary triangle, giving rise to CP violation. We can calculate the four parameters of the mixing matrix to draw the unitary triangle. The area of the triangle is a measure of the amount of CP violation.


2015 ◽  
Vol 30 (05) ◽  
pp. 1550019 ◽  
Author(s):  
Jun Iizuka ◽  
Teruyuki Kitabayashi ◽  
Yuki Minagawa ◽  
Masaki Yasuè

CP violation in neutrino interactions is described by three phases contained in Pontecorvo–Maki–Nakagawa–Sakata mixing matrix (U PMNS ). We argue that the phenomenologically consistent result of the Dirac CP violation can be obtained if U PMNS is constructed along bipair neutrino mixing scheme, namely, requiring that |U12| = |U32| and |U22| = |U23| (case 1) and |U12| = |U22| and |U32| = |U33| (case 2), where Uij stands for the i × j matrix element of U PMNS . As a result, the solar, atmospheric and reactor neutrino mixing angles θ12, θ23 and θ13, respectively, are correlated to satisfy cos 2θ12 = sin 2 θ23 - tan 2 θ13 (case 1) or cos 2θ12 = cos 2 θ23 - tan 2 θ13 (case 2). Furthermore, if Dirac CP violation is observed to be maximal, θ23 is determined by θ13 to be: [Formula: see text] (case 1) or [Formula: see text] (case 2). For the case of non-maximal Dirac CP violation, we perform numerical computation to show relations between the CP-violating Dirac phase and the mixing angles.


Sign in / Sign up

Export Citation Format

Share Document