scholarly journals Through the big bang: Continuing Einstein's equations beyond a cosmological singularity

2018 ◽  
Vol 778 ◽  
pp. 339-343 ◽  
Author(s):  
Tim A. Koslowski ◽  
Flavio Mercati ◽  
David Sloan
2015 ◽  
Vol 30 (13) ◽  
pp. 1550068
Author(s):  
L. Clavelli ◽  
Gary R. Goldstein

We discuss various space–time metrics which are compatible with Einstein's equations and a previously suggested cosmology with a finite total mass.1 In this alternative cosmology, the matter density was postulated to be a spatial delta function at the time of the big bang thereafter diffusing outward with constant total mass. This proposal explores a departure from standard assumptions that the big bang occurred everywhere at once or was just one of an infinite number of previous and later transitions.


2017 ◽  
Vol 26 (12) ◽  
pp. 1743014 ◽  
Author(s):  
Arthur E. Fischer

We model the standard [Formula: see text]CDM model of the universe by the spatially flat FLRW line element [Formula: see text] which we extend for all time [Formula: see text]. Although there is a cosmological singularity at the big bang [Formula: see text], since the spatial part of the metric collapses to zero, nevertheless, this line element is defined for all time [Formula: see text], is [Formula: see text] for all [Formula: see text], is [Formula: see text] differentiable at [Formula: see text], and is non-degenerate and solves Friedmann’s equation for all [Formula: see text]. Thus, we can use this extended line element to model the universe from its past-asymptotic initial state [Formula: see text] at [Formula: see text], through the big bang at [Formula: see text], and onward to its future-asymptotic final state [Formula: see text] at [Formula: see text]. Since in this model the universe existed before the big bang, we conclude that (1) the universe was not created de novo at the big bang and (2) cosmological singularities such as black holes or the big bang itself need not be an end to spacetime. Our model shows that the universe was asymptotically created de novo out of nothing at [Formula: see text] from an unstable vacuum negative half de Sitter [Formula: see text] initial state and then dies asymptotically at [Formula: see text] as the stable positive half de Sitter [Formula: see text] final state. Since the de Sitter states are vacuum matter states, our model shows that the universe was created from nothing at [Formula: see text] and dies at [Formula: see text] to nothing.


2006 ◽  
Vol 190 ◽  
pp. 15-15
Author(s):  
D CASTELVECCHI
Keyword(s):  
Big Bang ◽  

Author(s):  
Abraham Loeb ◽  
Steven R. Furlanetto

This book provides a comprehensive, self-contained introduction to one of the most exciting frontiers in astrophysics today: the quest to understand how the oldest and most distant galaxies in our universe first formed. Until now, most research on this question has been theoretical, but the next few years will bring about a new generation of large telescopes that promise to supply a flood of data about the infant universe during its first billion years after the big bang. This book bridges the gap between theory and observation. It is an invaluable reference for students and researchers on early galaxies. The book starts from basic physical principles before moving on to more advanced material. Topics include the gravitational growth of structure, the intergalactic medium, the formation and evolution of the first stars and black holes, feedback and galaxy evolution, reionization, 21-cm cosmology, and more.


Author(s):  
Jan Zalasiewicz

This is the story of a single pebble. It is just a normal pebble, as you might pick up on holiday - on a beach in Wales, say. Its history, though, carries us into abyssal depths of time, and across the farthest reaches of space. This is a narrative of the Earth's long and dramatic history, as gleaned from a single pebble. It begins as the pebble-particles form amid unimaginable violence in distal realms of the Universe, in the Big Bang and in supernova explosions and continues amid the construction of the Solar System. Jan Zalasiewicz shows the almost incredible complexity present in such a small and apparently mundane object. Many events in the Earth's ancient past can be deciphered from a pebble: volcanic eruptions; the lives and deaths of extinct animals and plants; the alien nature of long-vanished oceans; and transformations deep underground, including the creations of fool's gold and of oil. Zalasiewicz demonstrates how geologists reach deep into the Earth's past by forensic analysis of even the tiniest amounts of mineral matter. Many stories are crammed into each and every pebble around us. It may be small, and ordinary, this pebble - but it is also an eloquent part of our Earth's extraordinary, never-ending story.


Sign in / Sign up

Export Citation Format

Share Document