scholarly journals Scalarization of horizonless reflecting stars: Neutral scalar fields non-minimally coupled to Maxwell fields

2020 ◽  
Vol 804 ◽  
pp. 135372 ◽  
Author(s):  
Yan Peng
2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Alexander A. Penin ◽  
Quinten Weller

Abstract We elaborate a theory of giant vortices [1] based on an asymptotic expansion in inverse powers of their winding number n. The theory is applied to the analysis of vortex solutions in the abelian Higgs (Ginzburg-Landau) model. Specific properties of the giant vortices for charged and neutral scalar fields as well as different integrable limits of the scalar self-coupling are discussed. Asymptotic results and the finite-n corrections to the vortex solutions are derived in analytic form and the convergence region of the expansion is determined.


1971 ◽  
Vol 2 (26) ◽  
pp. 1376-1378
Author(s):  
A. Cordesse
Keyword(s):  

1992 ◽  
Vol 07 (38) ◽  
pp. 3569-3574 ◽  
Author(s):  
KIYOSHI SHIRAISHI

The expectation value <ϕ2> in the Hartle-Hawking vacuum is calculated for minimally-coupled neutral scalar fields at the horizon of a charged dilatonic black hole.


2021 ◽  
Vol 81 (11) ◽  
Author(s):  
Yuta Hamada ◽  
Hikaru Kawai ◽  
Kiyoharu Kawana ◽  
Kin-ya Oda ◽  
Kei Yagyu

AbstractWe propose a minimal model that can explain the electroweak scale, neutrino masses, Dark Matter (DM), and successful inflation all at once based on the multicritical-point principle (MPP). The model has two singlet scalar fields that realize an analogue of the Coleman–Weinberg mechanism, in addition to the Standard Model with heavy Majorana right-handed neutrinos. By assuming a $$Z_2 $$ Z 2 symmetry, one of the scalars becomes a DM candidate whose property is almost the same as the minimal Higgs-portal scalar DM. In this model, the MPP can naturally realize a saddle point in the Higgs potential at high energy scales. By the renormalization-group analysis, we study the critical Higgs inflation with non-minimal coupling $$\xi |H|^2 R$$ ξ | H | 2 R that utilizes the saddle point of the Higgs potential. We find that it is possible to realize successful inflation even for $$\xi =25$$ ξ = 25 and that the heaviest right-handed neutrino is predicted to have a mass around $$10^{14}$$ 10 14 $$\mathrm{GeV}$$ GeV to meet the current cosmological observations. Such a small value of $$\xi $$ ξ can be realized by the Higgs-portal coupling $$\lambda _{SH}\simeq 0.32$$ λ SH ≃ 0.32 and the vacuum expectation value of the additional neutral scalar $$\langle \phi \rangle \simeq 2.7$$ ⟨ ϕ ⟩ ≃ 2.7  TeV, which correspond to the dark matter mass 2.0 TeV, its spin-independent cross section $$1.8\times 10^{-9}$$ 1.8 × 10 - 9  pb, and the mass of additional neutral scalar 190 GeV.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Nikolay Bobev ◽  
Thomas Fischbacher ◽  
Fridrik Freyr Gautason ◽  
Krzysztof Pilch

Abstract We identify 219 AdS4 solutions in four-dimensional dyonically gauged ISO(7) $$ \mathcal{N} $$ N = 8 supergravity and present some of their properties. One of the new solutions preserves $$ \mathcal{N} $$ N = 1 supersymmetry and provides a rare explicit example of an AdS4 vacuum dual to a 3d SCFT with no continuous global symmetry. There are also two new non-supersymmetric solutions for which all 70 scalar fields in the supergravity theory have masses above the BF bound. All of these AdS4 solutions can be uplifted to massive type IIA supergravity. Motivated by this we present the low lying operator spectra of the dual 3d CFTs for all known supersymmetric AdS4 solutions in the theory and organize them into superconformal multiplets.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Clifford Cheung ◽  
Zander Moss

Abstract We argue that symmetry and unification can emerge as byproducts of certain physical constraints on dynamical scattering. To accomplish this we parameterize a general Lorentz invariant, four-dimensional theory of massless and massive scalar fields coupled via arbitrary local interactions. Assuming perturbative unitarity and an Adler zero condition, we prove that any finite spectrum of massless and massive modes will necessarily unify at high energies into multiplets of a linearized symmetry. Certain generators of the symmetry algebra can be derived explicitly in terms of the spectrum and three-particle interactions. Furthermore, our assumptions imply that the coset space is symmetric.


2012 ◽  
Vol 405 ◽  
pp. 012015
Author(s):  
O Ganguly ◽  
D Gangopadhyay ◽  
P Majumdar
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document