scholarly journals Symmetry and unification from soft theorems and unitarity

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Clifford Cheung ◽  
Zander Moss

Abstract We argue that symmetry and unification can emerge as byproducts of certain physical constraints on dynamical scattering. To accomplish this we parameterize a general Lorentz invariant, four-dimensional theory of massless and massive scalar fields coupled via arbitrary local interactions. Assuming perturbative unitarity and an Adler zero condition, we prove that any finite spectrum of massless and massive modes will necessarily unify at high energies into multiplets of a linearized symmetry. Certain generators of the symmetry algebra can be derived explicitly in terms of the spectrum and three-particle interactions. Furthermore, our assumptions imply that the coset space is symmetric.

2012 ◽  
Vol 21 (03) ◽  
pp. 1250030 ◽  
Author(s):  
RAMÓN BECAR ◽  
P. A. GONZÁLEZ

We study massive scalar fields and Dirac fields propagating in a five-dimensional dilatonic black hole background. We expose that for both fields the physics can be described by a two-dimensional theory, near the horizon. Then, in this limit, by applying the covariant anomalies method we find the Hawking flux by restoring the gauge invariance and the general coordinate covariance, which coincides with the flux obtained from integrating the Planck distribution for fermions.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Koichi Harada ◽  
Pei-Ming Ho ◽  
Yutaka Matsuo ◽  
Akimi Watanabe

Abstract In the matrix model approaches of string/M theories, one starts from a generic symmetry gl(∞) to reproduce the space-time manifold. In this paper, we consider the generalization in which the space-time manifold emerges from a gauge symmetry algebra which is not necessarily gl(∞). We focus on the second nontrivial example after the toroidal compactification, the coset space G/H, and propose a specific infinite-dimensional symmetry which realizes the geometry. It consists of the gauge-algebra valued functions on the coset and Lorentzian generator pairs associated with the isometry. We show that the 0-dimensional gauge theory with the mass and Chern-Simons terms gives the gauge theory on the coset with scalar fields associated with H.


Author(s):  
Dong-Yu Li ◽  
Zhao-Xiang Wu ◽  
Hao Hu ◽  
Bao-Min Gu

We study the braneworld theory constructed by multi scalar fields. The model contains a smooth and infinitely large extra dimension, allowing the background fields propagating in it. We give a de Sitter solution for the four-dimensional cosmology as a good approximation to the early universe inflation. We show that the graviton has a localizable massless mode, and a series of continuous massive modes, separated by a mass gap. There could be a normalizable massive mode, depending on the background solution. The gravitational waves of massless mode evolve the same as the four dimensional theory, while that of the massive modes evolve greatly different from the massless mode.


2015 ◽  
Vol 24 (14) ◽  
pp. 1550102 ◽  
Author(s):  
Haryanto M. Siahaan

In this paper, we show the instability of a charged massive scalar field in bound states around Kerr–Sen black holes. By matching the near and far region solutions of the radial part in the corresponding Klein–Gordon equation, one can show that the frequency of bound state scalar fields contains an imaginary component which gives rise to an amplification factor for the fields. Hence, the unstable modes for a charged and massive scalar perturbation in Kerr–Sen background can be shown.


2018 ◽  
Vol 98 (2) ◽  
Author(s):  
Yang Huang ◽  
Dao-Jun Liu ◽  
Xiang-hua Zhai ◽  
Xin-zhou Li
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document