scholarly journals Revisit the chiral magnetic effect expectation in isobaric collisions at the relativistic heavy ion collider

2021 ◽  
pp. 136549
Author(s):  
Yicheng Feng ◽  
Yufu Lin ◽  
Jie Zhao ◽  
Fuqiang Wang
2021 ◽  
Author(s):  
Subikash Choudhury ◽  
Xin Dong ◽  
Jim Drachenberg ◽  
James Dunlop ◽  
Esumi ShinIchi ◽  
...  

2020 ◽  
Vol 70 (1) ◽  
pp. 293-321 ◽  
Author(s):  
Wei Li ◽  
Gang Wang

The interplay of quantum anomalies with strong magnetic fields and vorticity in chiral systems could lead to novel transport phenomena, such as the chiral magnetic effect (CME), the chiral magnetic wave (CMW), and the chiral vortical effect (CVE). In high-energy nuclear collisions, these chiral effects may survive the expansion of a quark–gluon plasma fireball and be detected in experiments. The experimental searches for the CME, the CMW, and the CVE have aroused extensive interest over the past couple of decades. The main goal of this article is to review the latest experimental progress in the search for these novel chiral transport phenomena at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory and the Large Hadron Collider at CERN. Future programs to help reduce uncertainties and facilitate the interpretation of the data are also discussed.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Lei Yin ◽  
Defu Hou ◽  
Hai-cang Ren

Abstract The chiral magnetic effect with a fluctuating chiral imbalance is more realistic in the evolution of quark-gluon plasma, which reflects the random gluonic topological transition. Incorporating this dynamics, we calculate the chiral magnetic current in response to space-time dependent axial gauge potential and magnetic field in AdS/CFT correspondence. In contrast to conventional treatment of constant axial chemical potential, the response function here is the AVV three-point function of the $$ \mathcal{N} $$ N = 4 super Yang-Mills at strong coupling. Through an iterative solution of the nonlinear equations of motion in Schwarzschild-AdS5 background, we are able to express the AVV function in terms of two Heun functions and prove its UV/IR finiteness, as expected for $$ \mathcal{N} $$ N = 4 super Yang-Mills theory. We found that the dependence of the chiral magnetic current on a non-constant chiral imbalance is non-local, different from hydrodynamic approximation, and demonstrates the subtlety of the infrared limit discovered in field theoretic approach. We expect our results enrich the understanding of the phenomenology of the chiral magnetic effect in the context of relativistic heavy ion collisions.


2022 ◽  
Vol 258 ◽  
pp. 10007
Author(s):  
Sebastian Grieninger ◽  
Sergio Morales-Tejera

We study the real time evolution of the chiral magnetic effect out-ofequilibrium in strongly coupled anomalous field theories. We match the parameters of our model to QCD parameters and draw lessons of possible relevance for the realization of the chiral magnetic effect in heavy ion collisions. In particular, we find an equilibration time of about ~ 0:35 fm/c in presence of the chiral anomaly for plasma temperatures of order T ~ 300 - 400 MeV.


2021 ◽  
Vol 104 (6) ◽  
Author(s):  
Ryan Milton ◽  
Gang Wang ◽  
Maria Sergeeva ◽  
Shuzhe Shi ◽  
Jinfeng Liao ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-17 ◽  
Author(s):  
Gang Wang ◽  
Liwen Wen

Various novel transport phenomena in chiral systems result from the interplay of quantum anomalies with magnetic field and vorticity in high-energy heavy-ion collisions and could survive the expansion of the fireball and be detected in experiments. Among them are the chiral magnetic effect, the chiral vortical effect, and the chiral magnetic wave, the experimental searches for which have aroused extensive interest. The goal of this review is to describe the current status of experimental studies at Relativistic Heavy-Ion Collider at BNL and the Large Hadron Collider at CERN and to outline the future work in experiment needed to eliminate the existing uncertainties in the interpretation of the data.


Sign in / Sign up

Export Citation Format

Share Document