p-Hydroxyphenylpyruvate dioxygenase is a herbicidal target site for β-triketones from Leptospermum scoparium

2007 ◽  
Vol 68 (14) ◽  
pp. 2004-2014 ◽  
Author(s):  
Franck E. Dayan ◽  
Stephen O. Duke ◽  
Audrey Sauldubois ◽  
Nidhi Singh ◽  
Christopher McCurdy ◽  
...  
Author(s):  
Vikram S. ◽  
Sangeeta Rao ◽  
Deepika S. ◽  
Smrithi Valsan ◽  
Swati R
Keyword(s):  
The Body ◽  

Ayurveda which is the science of life is famous all over the world because of its unique concepts and practising methods. The main aim of Ayurveda is to attain Dhatusamyakriya, and through that maintain the Swasthyata of the body. Anupana is one of the unique concept of Ayurveda which plays an important role in the treatment. Anupana is that material which is consumed along with food or medicine. It can increase the palatability of the food or medicine, can improve the digestion and absorption and also act as a vehicle which carries the drug to their target site. Hence this article deals with the importance of Anupana in the Ayurvedic practise.


2003 ◽  
Vol 59 (2) ◽  
pp. 190-201 ◽  
Author(s):  
Stephen R Moss ◽  
Kay M Cocker ◽  
Amanda C Brown ◽  
Linda Hall ◽  
Linda M Field

2021 ◽  
Vol 11 (5) ◽  
pp. 401
Author(s):  
Catherine A. Hoover ◽  
Kendahl L. Ott ◽  
Heather R. Manring ◽  
Trevor Dew ◽  
Maegen A. Borzok ◽  
...  

Desmoplakin (DSP) is a large (~260 kDa) protein found in the desmosome, a subcellular complex that links the cytoskeleton of one cell to its neighbor. A mutation ‘hot-spot’ within the NH2-terminal third of the DSP protein (specifically, residues 299–515) is associated with both cardiomyopathies and skin defects. In select DSP variants, disease is linked specifically to the uncovering of a previously-occluded calpain target site (residues 447–451). Here, we partially stabilize these calpain-sensitive DSP clinical variants through the addition of a secondary single point mutation—tyrosine for leucine at amino acid position 518 (L518Y). Molecular dynamic (MD) simulations and enzymatic assays reveal that this stabilizing mutation partially blocks access to the calpain target site, resulting in restored DSP protein levels. This ‘molecular band-aid’ provides a novel way to maintain DSP protein levels, which may lead to new strategies for treating this subset of DSP-related disorders.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Joseph R. Owen ◽  
Sadie L. Hennig ◽  
Bret R. McNabb ◽  
Tamer A. Mansour ◽  
Justin M. Smith ◽  
...  

Abstract Background The homologous recombination (HR) pathway is largely inactive in early embryos prior to the first cell division, making it difficult to achieve targeted gene knock-ins. The homology-mediated end joining (HMEJ)-based strategy has been shown to increase knock-in efficiency relative to HR, non-homologous end joining (NHEJ), and microhomology-mediated end joining (MMEJ) strategies in non-dividing cells. Results By introducing gRNA/Cas9 ribonucleoprotein complex and a HMEJ-based donor template with 1 kb homology arms flanked by the H11 safe harbor locus gRNA target site, knock-in rates of 40% of a 5.1 kb bovine sex-determining region Y (SRY)-green fluorescent protein (GFP) template were achieved in Bos taurus zygotes. Embryos that developed to the blastocyst stage were screened for GFP, and nine were transferred to recipient cows resulting in a live phenotypically normal bull calf. Genomic analyses revealed no wildtype sequence at the H11 target site, but rather a 26 bp insertion allele, and a complex 38 kb knock-in allele with seven copies of the SRY-GFP template and a single copy of the donor plasmid backbone. An additional minor 18 kb allele was detected that looks to be a derivative of the 38 kb allele resulting from the deletion of an inverted repeat of four copies of the SRY-GFP template. Conclusion The allelic heterogeneity in this biallelic knock-in calf appears to have resulted from a combination of homology directed repair, homology independent targeted insertion by blunt-end ligation, NHEJ, and rearrangement following editing of the gRNA target site in the donor template. This study illustrates the potential to produce targeted gene knock-in animals by direct cytoplasmic injection of bovine embryos with gRNA/Cas9, although further optimization is required to ensure a precise single-copy gene integration event.


Sign in / Sign up

Export Citation Format

Share Document