Phylogeny, topology, structure and functions of membrane-bound class III peroxidases in vascular plants

2011 ◽  
Vol 72 (10) ◽  
pp. 1124-1135 ◽  
Author(s):  
Sabine Lüthje ◽  
Claudia-Nicole Meisrimler ◽  
David Hopff ◽  
Benjamin Möller
2018 ◽  
Vol 19 (10) ◽  
pp. 2876 ◽  
Author(s):  
Sabine Lüthje ◽  
Teresa Martinez-Cortes

Class III peroxidases are heme-containing proteins of the secretory pathway with a high redundance and versatile functions. Many soluble peroxidases have been characterized in great detail, whereas only a few studies exist on membrane-bound isoenzymes. Membrane localization of class III peroxidases has been demonstrated for tonoplast, plasma membrane and detergent resistant membrane fractions of different plant species. In silico analysis revealed transmembrane domains for about half of the class III peroxidases that are encoded by the maize (Zea mays) genome. Similar results have been found for other species like thale-cress (Arabidopsis thaliana), barrel medic (Medicago truncatula) and rice (Oryza sativa). Besides this, soluble peroxidases interact with tonoplast and plasma membranes by protein–protein interaction. The topology, spatiotemporal organization, molecular and biological functions of membrane-bound class III peroxidases are discussed. Besides a function in membrane protection and/or membrane repair, additional functions have been supported by experimental data and phylogenetics.


2020 ◽  
Vol 21 (22) ◽  
pp. 8872
Author(s):  
Anne Hofmann ◽  
Stefanie Wienkoop ◽  
Sönke Harder ◽  
Fabian Bartlog ◽  
Sabine Lüthje

Flooding induces low-oxygen environments (hypoxia or anoxia) that lead to energy disruption and an imbalance of reactive oxygen species (ROS) production and scavenging enzymes in plants. The influence of hypoxia on roots of hydroponically grown maize (Zea mays L.) plants was investigated. Gene expression (RNA Seq and RT-qPCR) and proteome (LC–MS/MS and 2D-PAGE) analyses were used to determine the alterations in soluble and membrane-bound class III peroxidases under hypoxia. Gel-free peroxidase analyses of plasma membrane-bound proteins showed an increased abundance of ZmPrx03, ZmPrx24, ZmPrx81, and ZmPr85 in stressed samples. Furthermore, RT-qPCR analyses of the corresponding peroxidase genes revealed an increased expression. These peroxidases could be separated with 2D-PAGE and identified by mass spectrometry. An increased abundance of ZmPrx03 and ZmPrx85 was determined. Further peroxidases were identified in detergent-insoluble membranes. Co-regulation with a respiratory burst oxidase homolog (Rboh) and key enzymes of the phenylpropanoid pathway indicates a function of the peroxidases in membrane protection, aerenchyma formation, and cell wall remodeling under hypoxia. This hypothesis was supported by the following: (i) an elevated level of hydrogen peroxide and aerenchyma formation; (ii) an increased guaiacol peroxidase activity in membrane fractions of stressed samples, whereas a decrease was observed in soluble fractions; and (iii) alterations in lignified cells, cellulose, and suberin in root cross-sections.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Kewei Cai ◽  
Huixin Liu ◽  
Song Chen ◽  
Yi Liu ◽  
Xiyang Zhao ◽  
...  

Abstract Background Class III peroxidases (POD) proteins are widely present in the plant kingdom that are involved in a broad range of physiological processes including stress responses and lignin polymerization throughout the plant life cycle. At present, POD genes have been studied in Arabidopsis, rice, poplar, maize and Chinese pear, but there are no reports on the identification and function of POD gene family in Betula pendula. Results We identified 90 nonredundant POD genes in Betula pendula. (designated BpPODs). According to phylogenetic relationships, these POD genes were classified into 12 groups. The BpPODs are distributed in different numbers on the 14 chromosomes, and some BpPODs were located sequentially in tandem on chromosomes. In addition, we analyzed the conserved domains of BpPOD proteins and found that they contain highly conserved motifs. We also investigated their expression patterns in different tissues, the results showed that some BpPODs might play an important role in xylem, leaf, root and flower. Furthermore, under low temperature conditions, some BpPODs showed different expression patterns at different times. Conclusions The research on the structure and function of the POD genes in Betula pendula plays a very important role in understanding the growth and development process and the molecular mechanism of stress resistance. These results lay the theoretical foundation for the genetic improvement of Betula pendula.


2004 ◽  
Vol 279 (37) ◽  
pp. 39000-39009 ◽  
Author(s):  
Roberta Pierattelli ◽  
Lucia Banci ◽  
Nigel A. J. Eady ◽  
Jacques Bodiguel ◽  
Jamie N. Jones ◽  
...  

Author(s):  
A.A. Akhrem ◽  
V.N. Lapko ◽  
A.G. Lapko ◽  
S.P. Martsev ◽  
V.M. Shkumatov ◽  
...  

Author(s):  
Sabine Lüthje ◽  
Claudia-Nicole Meisrimler ◽  
David Hopff ◽  
Tim Schütze ◽  
Jenny Köppe ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Raffael Azevedo de Carvalho Oliveira ◽  
Abraão Silveira de Andrade ◽  
Danilo Oliveira Imparato ◽  
Juliana Gabriela Silva de Lima ◽  
Ricardo Victor Machado de Almeida ◽  
...  

Abstract Reactive oxygen species (ROS) are byproducts of aerobic metabolism and may cause oxidative damage to biomolecules. Plants have a complex redox system, involving enzymatic and non-enzymatic compounds. The evolutionary origin of enzymatic antioxidant defense in plants is yet unclear. Here, we describe the redox gene network for A. thaliana and investigate the evolutionary origin of this network. We gathered from public repositories 246 A. thaliana genes directly involved with ROS metabolism and proposed an A. thaliana redox gene network. Using orthology information of 238 Eukaryotes from STRINGdb, we inferred the evolutionary root of each gene to reconstruct the evolutionary history of A. thaliana antioxidant gene network. We found two interconnected clusters: one formed by SOD-related, Thiol-redox, peroxidases, and other oxido-reductase; and the other formed entirely by class III peroxidases. Each cluster emerged in different periods of evolution: the cluster formed by SOD-related, Thiol-redox, peroxidases, and other oxido-reductase emerged before opisthokonta-plant divergence; the cluster composed by class III peroxidases emerged after opisthokonta-plant divergence and therefore contained the most recent network components. According to our results, class III peroxidases are in expansion throughout plant evolution, with new orthologs emerging in each evaluated plant clade divergence.


2013 ◽  
Vol 62 ◽  
pp. 1-10 ◽  
Author(s):  
Igor Cesarino ◽  
Pedro Araújo ◽  
Adriana Franco Paes Leme ◽  
Silvana Creste ◽  
Paulo Mazzafera

Sign in / Sign up

Export Citation Format

Share Document