scholarly journals Analyzing edge detection techniques for feature extraction in dental radiographs

2016 ◽  
Vol 8 ◽  
pp. 395-398 ◽  
Author(s):  
Kanika Lakhani ◽  
Bhawna Minocha ◽  
Neeraj Gugnani
2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Abdulbasit Alazzawi ◽  
Osman N. Ucan ◽  
Oguz Bayat

Recent research proves that face recognition systems can achieve high-quality results even in non-ideal environments. Edge detection techniques and feature extraction methods are popular mechanisms used in face recognition systems. Edge detection can be used to construct the face map in the image efficiently, in which feature extraction techniques generate the most suitable features that can identify human faces. In this study, we present a new and efficient face recognition system that uses various gradient-and Laplacian-based operators with a new feature extraction method. Different edge detection operators are exploited to obtain the best image edges. The new and robust method based on the slope of the linear regression, called SLP, uses the estimated face lines in its feature extraction step. Artificial neural network (ANN) is used as a classifier. To determine the best scheme that gives the best performance, we test combinations of various techniques such as (Sobel filter (SF), SLP/principal component analysis (PCA), ANN), (Prewitt filter(PF), SLP/PCA, ANN), (Roberts filter (RF), SLP/PCA, ANN), (zero cross filter (ZF), SLP/PCA, ANN), (Laplacian of Gaussian filter (LG), SLP/PCA, ANN), and (Canny filter(CF), SLP/PCA, ANN). The BIO ID dataset is used in the training and testing phases for the proposed face recognition system combinations. Experimental results indicate that the proposed schemes achieve satisfactory results with high-accuracy classification. Notably, the combinations of (SF, SLP, ANN) and (ZF, SLP, ANN) gain the best results and outperform all the other algorithm combinations.


2021 ◽  
Vol 23 (11) ◽  
pp. 159-165
Author(s):  
JAYANTH DWIJESH H P ◽  
◽  
SANDEEP S V ◽  
RASHMI S ◽  
◽  
...  

In today’s world, accurate and fast information is vital for safe aircraft landings. The purpose of an EMAS (Engineered Materials Arresting System) is to prevent an aeroplane from overrunning with no human injury and minimal damage to the aircraft. Although various algorithms for object detection analysis have been developed, only a few researchers have examined image analysis as a landing assist. Image intensity edges are employed in one system to detect the sides of a runway in an image sequence, allowing the runway’s 3-dimensional position and orientation to be approximated. A fuzzy network system is used to improve object detection and extraction from aerial images. In another system, multi-scale, multiplatform imagery is used to combine physiologically and geometrically inspired algorithms for recognizing objects from hyper spectral and/or multispectral (HS/MS) imagery. However, the similarity in the top view of runways, buildings, highways, and other objects is a disadvantage of these methods. We propose a new method for detecting and tracking the runway based on pattern matching and texture analysis of digital images captured by aircraft cameras. Edge detection techniques are used to recognize runways from aerial images. The edge detection algorithms employed in this paper are the Hough Transform, Canny Filter, and Sobel Filter algorithms, which result in efficient detection.


Author(s):  
Nilava Mukherjee ◽  
Sumitra Mukhopadhyay ◽  
Rajarshi Gupta

Abstract Motivation: In recent times, mental stress detection using physiological signals have received widespread attention from the technology research community. Although many motivating research works have already been reported in this area, the evidence of hardware implementation is occasional. The main challenge in stress detection research is using optimum number of physiological signals, and real-time detection with low complexity algorithm. Objective: In this work, a real-time stress detection technique is presented which utilises only photoplethysmogram (PPG) signal to achieve improved accuracy over multi-signal-based mental stress detection techniques. Methodology: A short segment of 5s PPG signal was used for feature extraction using an autoencoder (AE), and features were minimized using recursive feature elimination (RFE) integrated with a multi-class support vector machine (SVM) classifier. Results: The proposed AE-RFE-SVM based mental stress detection technique was tested with WeSAD dataset to detect four-levels of mental state, viz., baseline, amusement, meditation and stress and to achieve an overall accuracy, F1 score and sensitivity of 99%, 0.99 and 98% respectively for 5s PPG data. The technique provided improved performance over discrete wavelet transformation (DWT) based feature extraction followed by classification with either of the five types of classifiers, viz., SVM, random forest (RF), k-nearest neighbour (k-NN), linear regression (LR) and decision tree (DT). The technique was translated into a quad-core-based standalone hardware (1.2 GHz, and 1 GB RAM). The resultant hardware prototype achieves a low latency (~0.4 s) and low memory requirement (~1.7 MB). Conclusion: The present technique can be extended to develop remote healthcare system using wearable sensors.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Hima Bindu Valiveti ◽  
Anil Kumar B. ◽  
Lakshmi Chaitanya Duggineni ◽  
Swetha Namburu ◽  
Swaraja Kuraparthi

Purpose Road accidents, an inadvertent mishap can be detected automatically and alerts sent instantly with the collaboration of image processing techniques and on-road video surveillance systems. However, to rely exclusively on visual information especially under adverse conditions like night times, dark areas and unfavourable weather conditions such as snowfall, rain, and fog which result in faint visibility lead to incertitude. The main goal of the proposed work is certainty of accident occurrence. Design/methodology/approach The authors of this work propose a method for detecting road accidents by analyzing audio signals to identify hazardous situations such as tire skidding and car crashes. The motive of this project is to build a simple and complete audio event detection system using signal feature extraction methods to improve its detection accuracy. The experimental analysis is carried out on a publicly available real time data-set consisting of audio samples like car crashes and tire skidding. The Temporal features of the recorded audio signal like Energy Volume Zero Crossing Rate 28ZCR2529 and the Spectral features like Spectral Centroid Spectral Spread Spectral Roll of factor Spectral Flux the Psychoacoustic features Energy Sub Bands ratio and Gammatonegram are computed. The extracted features are pre-processed and trained and tested using Support Vector Machine (SVM) and K-nearest neighborhood (KNN) classification algorithms for exact prediction of the accident occurrence for various SNR ranges. The combination of Gammatonegram with Temporal and Spectral features of the validates to be superior compared to the existing detection techniques. Findings Temporal, Spectral, Psychoacoustic features, gammetonegram of the recorded audio signal are extracted. A High level vector is generated based on centroid and the extracted features are classified with the help of machine learning algorithms like SVM, KNN and DT. The audio samples collected have varied SNR ranges and the accuracy of the classification algorithms is thoroughly tested. Practical implications Denoising of the audio samples for perfect feature extraction was a tedious chore. Originality/value The existing literature cites extraction of Temporal and Spectral features and then the application of classification algorithms. For perfect classification, the authors have chosen to construct a high level vector from all the four extracted Temporal, Spectral, Psycho acoustic and Gammetonegram features. The classification algorithms are employed on samples collected at varied SNR ranges.


2018 ◽  
pp. 1245-1278
Author(s):  
Indra Kanta Maitra ◽  
Samir Kumar Bandhyopadhyaay

The CAD is a relatively young interdisciplinary technology, has had a tremendous impact on medical diagnosis specifically cancer detection. The accuracy of CAD to detect abnormalities on medical image analysis requires a robust segmentation algorithm. To achieve accurate segmentation, an efficient edge-detection algorithm is essential. Medical images like USG, X-Ray, CT and MRI exhibit diverse image characteristics but are essentially collection of intensity variations from which specific abnormalities are needed to be isolated. In this chapter a robust medical image enhancement and edge detection algorithm is proposed, using tree-based adaptive thresholding technique. It has been compared with different classical edge-detection techniques using one sample two tail t-test to exam whether the null hypothesis can be supported. The proposed edge-detection algorithm showing 0.07 p-values and 2.411 t-stat where α = 0.025. Moreover the proposed edge is single pixeled and connected which is very significant for medical edge detection.


Sign in / Sign up

Export Citation Format

Share Document