Autophagy sustains the expression of HO-1, an antioxidant stress protein, in trophoblasts.

Placenta ◽  
2021 ◽  
Vol 114 ◽  
pp. 149
Author(s):  
Atsushi Furuta ◽  
Mihoko Kawaguchi ◽  
Akemi Yamaki ◽  
Tomoko Shima ◽  
Satoshi Yoneda ◽  
...  
1999 ◽  
Vol 26 (1-2) ◽  
pp. 184-192 ◽  
Author(s):  
Andreas Michael Niess ◽  
Frank Passek ◽  
Ingrid Lorenz ◽  
Elisabeth Marion Schneider ◽  
Hans-Hermann Dickhuth ◽  
...  

Author(s):  
Nurgozhin T. ◽  
Sergazy S. H. ◽  
Adilgozhina G. ◽  
Gulyayev A. ◽  
Shulgau Z. ◽  
...  

Objective:This study investigates the hepatoprotective effect and the antioxidant role of polyphenol concentrate in the experimental model of carbon tetrachloride (CCl4) induced toxicity. Methods: Antioxidant activity of Cabernet Sauvignon grape polyphenol were evaluated by radical scavenging of 1,1-diphenyl-2-picryl hydrazyl radical (DPPH), 2,2’-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS.+). In addition, the effects of polyphenol concentrate on the survival of Wistar rats in the toxicity model, was also investigated. The polyphenol concentrate was administered for 5 five days prior to injection of carbon tetrachloride in a sub-lethal dose of 300 mg/kg of animal body weight in order to perform histological examinations of the liver and kidney, and detect the levels of AST, ALT and bilirubin. Results: Administration of polyphenol concentrate increased animal survival in the experimental model. Moreover, the intragastric administration of polyphenol concentrate prior to the initiation of the experimental model of toxicity, which was caused by a sub-lethal CCl4 dose, reduced morphological injuries in the liver and kidney, decreased the AST and ALT levels of the blood serum. Discussion and conclusion: Our data demonstrate that polyphenol concentrate possesses an antioxidant potential both in vitro and in vivo by reducing antioxidant stress that was caused by CCl4 administration into rats.


Author(s):  
Priscilla Masamba ◽  
Geraldene Munsamy ◽  
Abidemi Paul Kappo

Background: For decades, Praziquantel has been the undisputed drug of choice for all schistosome infections, but rising concerns due to the unelucidated mechanism of action of the drug and unavoidable reports of emerging drug resistant strains has necessitated the need for alternative treatment drug. Moreover, current apprehension has been reinforced by total dependence on the drug for treatment hence, the search for novel and effective anti-schistosomal drugs. Uses: This study made use of bioinformatic tools to determine the structural binding of the Universal G4LZI3 stress protein (USP) in complex with ten polyphenol compounds, thereby highlighting the effectiveness of these recently identified ‘lead’ molecules in the design of novel therapeutics targeted against schistosomiasis. Upregulation of the G4LZI3 USP throughout the schistosome multifaceted developmental cycle sparks interest in its potential role as a druggable target. The integration of in silico tools provides an atomistic perspective into the binding of potential inhibitors to target proteins. Conclusion: This study therefore, implemented the use of molecular dynamic (MD) simulations to provide functional and structural insight into key conformational changes upon binding of G4ZLI3 to these key phenolic compounds. Post-MD analyses revealed unique structural and conformational changes in the G4LZI3 protein in complex with curcumin and catechin respectively. These systems exhibited the highest binding energies, while the major interacting residues conserved in all the complexes provides a route map for structure-based drug design of novel compounds with enhanced inhibitory potency against the G4LZI3 protein. This study suggests an alternative approach for the development of anti-schistosomal drugs using natural compounds.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Xiangli Yan ◽  
Aiming Yu ◽  
Haozhen Zheng ◽  
Shengxin Wang ◽  
Yingying He ◽  
...  

Neuronal apoptosis induced by oxidative stress is a major pathological process that occurs after cerebral ischemia-reperfusion. Calycosin-7-O-β-D-glucoside (CG) is a representative component of isoflavones in Radix Astragali (RA). Previous studies have shown that CG has potential neuroprotective effects. However, whether CG alleviates neuronal apoptosis through antioxidant stress after ischemia-reperfusion remains unknown. To investigate the positive effects of CG on oxidative stress and apoptosis of neurons, we simulated the ischemia-reperfusion process in vitro using an immortalized hippocampal neuron cell line (HT22) and oxygen-glucose deprivation/reperfusion (OGD/R) model. CG significantly improved cell viability and reduced oxidative stress and neuronal apoptosis. In addition, CG treatment upregulated the expression of SIRT1, FOXO1, PGC-1α, and Bcl-2 and downregulated the expression of Bax. In summary, our findings indicate that CG alleviates OGD/R-induced damage via the SIRT1/FOXO1/PGC-1α signaling pathway. Thus, CG maybe a promising therapeutic candidate for brain injury associated with ischemic stroke.


Sign in / Sign up

Export Citation Format

Share Document