The barley starch granule proteome—internalized granule polypeptides of the mature endosperm

Plant Science ◽  
2004 ◽  
Vol 166 (3) ◽  
pp. 617-626 ◽  
Author(s):  
Mats Borén ◽  
Håkan Larsson ◽  
Anders Falk ◽  
Christer Jansson
1994 ◽  
Vol 269 (40) ◽  
pp. 25150-25157
Author(s):  
M.L. Maddelein ◽  
N. Libessart ◽  
F. Bellanger ◽  
B. Delrue ◽  
C. D'Hulst ◽  
...  

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Diego Fernando Roa Acosta ◽  
José Fernando Solanilla Duque ◽  
Lina Marcela Agudelo Laverde ◽  
Héctor Samuel Villada Castillo ◽  
Marcela Patricia Tolaba

AbstractIn this study, amaranth starch was extracted by high-impact wet milling and its structural and thermal properties and the effect of NaOH and SDS concentrations on extraction yield were evaluated. The best condition was 55 g of starch/100 g of amaranth, with a decrease from 2.5 to 3.5 kJ/g using different milling energies. The decrease in the protein content of the starch granule is due to an effect of the interaction between surfactant and alkali, preventing the destruction of granules. All starches presented a degree of crystallinity between 21 and 28%. The internal structural changes of the starch granule were monitored by attenuated total reflectance - Fourier-transform infrared (ATR-FTIR) in the region of 990 to 1060 cm−1. Spectra showed significant differences between the peaks at 1032 and 1005 cm−1, corresponding to the crystalline/amorphous region of the starch structure. Changes in viscosity profiles were observed between 0.302 and 1.163 Pa s.


2012 ◽  
Vol 550-553 ◽  
pp. 1513-1521
Author(s):  
Sirirat Thothong ◽  
Klanarong Sriroth ◽  
Rattana Tantatherdtam ◽  
Amnat Jarerat

To improve the miscibility of native rice starch granules and poly(butylene adipate-co-terephthalate)(PBAT), rice starch was hydrolyzed by a mixture of α-amylase and amyloglucosidase. The obtained porous rice granular starch was then mechanically blended with PBAT by single screw extruder. Many pits and holes on the surface of starch granules were observed by scanning electron microscopy (SEM). The rough surface of the rice starch granules improved the compatibility of the polymers in the blends, which consequently increased the tensile strength and the elongation at break. In addition, SEM also revealed that the porous granules were homogeneously distributed in the polymer matrix with no appearance of gaps.


2002 ◽  
Vol 108 (2) ◽  
pp. 200-203 ◽  
Author(s):  
V. Psota ◽  
I. Bohačenko ◽  
J. Hartmann ◽  
M. Budinská ◽  
J. Chmelík

1977 ◽  
Vol 29 (7) ◽  
pp. 217-223 ◽  
Author(s):  
P. Meredith ◽  
D. W. Baruch ◽  
L. D. Jenkins

Sign in / Sign up

Export Citation Format

Share Document