species effect
Recently Published Documents


TOTAL DOCUMENTS

133
(FIVE YEARS 28)

H-INDEX

23
(FIVE YEARS 3)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Benjamin Gutierrez ◽  
Heidi Schwaninger ◽  
Victoria Meakem ◽  
Jason Londo ◽  
Gan-Yuan Zhong

AbstractWild grape relatives and hybrids have been useful in breeding for tolerance to biotic and abiotic stress, however, few studies have emphasized wild and hybrid grapevines for phenological diversity. Utilization of phenological diversity in grapevine breeding could facilitate expansion of grape production into more varied climate regions. Budbreak, bloom, and veraison observations for 1583 accessions from 20 taxa from the United States Department of Agriculture Vitis collection in Geneva, New York, USA. Genotypic and species variation were estimated. Vitis vinifera ancestry was estimated in Vitis hybrids using principal components analysis. Observations ranged 26.6–162.1 (79–141 JD) with an average of 82.6 GDD (118 JD) for budbreak, 206.8–1055.2 (141–222 JD) with an average of 371.9 GDD (163 JD) for bloom, and 849.9–1627.0 (202–290 JD) with an average of 1207.9 GDD (235 JD) for veraison. Seasonal correlations were high for bloom and veraison (0.85–0.95) and moderate for budbreak (0.61–0.65). Moderate heritability was estimated for veraison (0.62) and bloom (0.49), and weak heritability for budbreak (0.2). The species effect was greatest in bloom and explained 42% of the variation, with increasing bloom GDD associated with increasing contribution of V. vinifera in Vitis hybrids.


2021 ◽  
Vol 75 (12) ◽  
Author(s):  
Samin Gokcekus ◽  
Josh A. Firth ◽  
Charlotte Regan ◽  
Ella F. Cole ◽  
Koosje P. Lamers ◽  
...  

Abstract Collective behaviors are typical for many social species and can have fitness benefits for participating individuals. To maximize the benefits obtained from group living, individuals must coordinate their behaviors to some extent. What are the mechanisms that make certain individuals more likely to initiate collective behaviors, for example, by taking a risk to initially access a resource (i.e., to act as “leaders”)? Here, we examine leading behavior in a natural population of great tits and blue tits. We use automated feeding stations to monitor the feeder visits of tagged individuals within mixed-species flocks, with a small cost (waiting < 2 s) associated with the initial unlocking of the feeder. We find that great tits, males, and individuals with high activity levels were more likely to be leading in each of their feeder visits. Using a null model approach, we demonstrate that the effects of sex and activity on passive leading behavior can be explained by patterns of spatial and temporal occurrence. In other words, these effects can be explained by the times and locations of when individuals visit rather than the actual order of arrival. Hence, an analysis of the causes of leading behavior is needed to separate the effects of different processes. We highlight the importance of understanding the mechanisms behind leading behavior and discuss directions for future experimental work to gain a better understanding of the causes of leadership in natural populations. Significance statement Many species are social and engage in collective behaviors. To benefit from group actions, individuals need to fulfill different roles. Here, we examine leading behavior during feeding events; who feeds first when birds arrive at a resource? In mixed-species flocks of passerines, great tits (the larger and more dominant species), males, and individuals with higher levels of activity lead more often than blue tits, females, and individuals with lower levels of activity. While the species effect remains even when we control for the locations and dates of individual feeder visits, the effects of sex and activity are dependent on when and where birds choose to feed.


2021 ◽  
Author(s):  
Clesse Margaux ◽  
Legout Arnaud ◽  
Ranger Jacques ◽  
Zeller Bernd ◽  
Van Der Heijden Gregory

Abstract Background: Intensive silvicultural practices and the planting of monospecific forests of coniferous, more productive compared to hardwoods, may threaten over the mid to long-term the sustainability of soil chemical fertility of forest ecosystems and is a major concern for forest managers and policy.Methods: We investigated the tree species effect (Quercus sessiliflora Smith, Fagus sylvatica L., Picea abies Karst., Pseudotsuga menziesii Mirb. Franco., Abies nordmanniana Spach. and Pinus nigra Arn. ssp laricio Poiret var corsicana) on the change over time of soil chemical properties and nutrient pool sizes in the mineral and organic layers of the soil during the 45 years after the plantation of the Breuil-Chenue common garden experiment (Burgundy, France). The organic and mineral soil layers down to 70 cm depth were sampled in the different monospecific plots in 1974, 2001 and 2019. Results: The Ca and Mg exchangeable pools and soil pH increased over the entire soil profile in most stands. However, the decrease of pH and the increase of exchange acidity in the topsoil layers under conifers and the overall decrease of exchangeable K pools in most stands highlighted that soil acidification is still on-going at this site but the intensity of this process depends on the tree species. Indeed, three groups of species could be distinguished: i) Nordmann fir / Norway spruce where acidolysis and chelation occurred, resulting in the most pronounced pH decrease in the topsoil, ii) Douglas fir / Laricio pine where acidification caused by elevated nitrification rates is probably currently compensated by larger weathering and/or atmospheric depositions fluxes, iii) and oak / beech where soil acidification was less intense. Counterintuitively, soil acidification at this site resulted in an increase in soil CEC which limited the loss of nutrient cations. This change in soil CEC was most likely explained by the precipitation/dissolution dynamics of aluminium (Al) (hydr)oxides in the interfoliar space of phyllosilicates and/or the increase in soil carbon (C) content in the topsoil layers. Conclusion: Tree species greatly and fairly rapidly (<45 years) influence the soil chemical fertility and the pedogenetic processes which in turn may impact forest ecosystem functions and services.


2021 ◽  
pp. e01919
Author(s):  
José Luis Aragón-Gastélum ◽  
Laura Yáñez-Espinosa ◽  
Jorge E. Ramírez-Albores ◽  
Claudia González-Salvatierra ◽  
Joel Flores

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Simon Lewin ◽  
Davide Francioli ◽  
Andreas Ulrich ◽  
Steffen Kolb

Abstract Background The native crop bacterial microbiota of the rhizosphere is envisioned to be engineered for sustainable agriculture. This requires the identification of keystone rhizosphere Bacteria and an understanding on how these govern crop-specific microbiome assembly from soils. We identified the metabolically active bacterial microbiota (SSU RNA) inhabiting two compartments of the rhizosphere of wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), rye (Secale cereale), and oilseed rape (Brassica napus L.) at different growth stages. Results Based on metabarcoding analysis the bacterial microbiota was shaped by the two rhizosphere compartments, i.e. close and distant. Thereby implying a different spatial extent of bacterial microbiota acquirement by the cereals species versus oilseed rape. We derived core microbiota of each crop species. Massilia (barley and wheat) and unclassified Chloroflexi of group ‘KD4-96’ (oilseed rape) were identified as keystone Bacteria by combining LEfSe biomarker and network analyses. Subsequently, differential associations between networks of each crop species’ core microbiota revealed host plant-specific interconnections for specific genera, such as the unclassified Tepidisphaeraceae ‘WD2101 soil group’. Conclusions Our results provide keystone rhizosphere Bacteria derived from for crop hosts and revealed that cohort subnetworks and differential associations elucidated host species effect that was not evident from differential abundance of single bacterial genera enriched or unique to a specific plant host. Thus, we underline the importance of co-occurrence patterns within the rhizosphere microbiota that emerge in crop-specific microbiomes, which will be essential to modify native crop microbiomes for future agriculture and to develop effective bio-fertilizers.


2021 ◽  
Author(s):  
Gregoire LE PROVOST ◽  
Benjamin Brachi ◽  
Isabelle Lesur ◽  
Celine Lalanne ◽  
Karine Labadie ◽  
...  

Drought and waterlogging impede tree growth and may even lead to tree death. With climate change, these environmental factors are a growing source of concern, particularly for temperate forests. Oaks, an emblematic group of tree species, have evolved a range of adaptations to cope with these constraints. The two most widely distributed European species pedunculate oak (PO) and sessile oaks (SO) have overlapping ranges, but are highly constrained locally by soil water content variation. These differences in local ecological requirements provide a powerful biological model for studying the role of ecological barriers in speciation. We used an experimental set-up mimicking the ecological preferences of these species, in which seedlings were subjected to waterlogging and drought. We studied gene expression in roots by RNA-seq and identified genes differentially expressed between treatments with different outcomes depending on species. These ″species x environment″ responsive genes revealed adaptive molecular strategies involving adventitious and lateral root formation, aerenchyma formation in PO, and osmoregulation and ABA regulation in SO. With this experimental design, we also identified genes with expression profiles presenting a ″species″ effect regardless of imposed constraints with important roles in intrinsic reproductive barriers. Finally, we compared our findings with those for a genome scan of species divergence and found that the candidate genes were enriched in highly differentiated SNPs. This suggests that many of the genes involved in the contrasting transcriptomic responses are subject to natural selection and that gene regulation helps to maintain these two different oak species in sympatry.


2021 ◽  
Author(s):  
Simon Lewin ◽  
Davide Francioli ◽  
Andreas Ulrich ◽  
Steffen Kolb

Abstract Background: The native crop bacterial microbiota of the rhizosphere is envisioned to be engineered for sustainable agriculture. This requires the identification of keystone rhizosphere Bacteria and an understanding on how these govern crop-specific microbiome assembly from soils. We identified the metabolically active bacterial microbiota (SSU RNA) inhabiting two compartments of the rhizosphere of wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), rye (Secale cereale), and oilseed rape (Brassica napus L.) at different growth stages. Results: Based on metabarcoding analysis the bacterial microbiota was shaped by the two rhizosphere compartments, i.e. close and distant. Thereby implying a different spatial extend of bacterial microbiota acquirement by the cereals species versus oilseed rape. We derived core microbiota of each crop species. Massilia (barley and wheat) and unclassified Chloroflexi of group ‘KD4-96’ (oilseed rape) were identified as keystone Bacteria by combining LEfSe biomarker and network analyses. Subsequently, differential associations between networks of each crop species’ core microbiota revealed host plant-specific interconnections for specific genera, such as the unclassified Tepidisphaeraceae ‘WD2101 soil group’. Conclusions: Our results provide keystone rhizosphere Bacteria derived from for crop hosts and revealed that cohort subnetworks and differential associations elucidated host species effect that was not evident from differential abundance of single bacterial genera enriched or unique to a specific plant host. Thus, we underline the importance of co-occurrence patterns within the rhizosphere microbiota that emerge in crop-specific microbiomes, which will be essential to modify native crop microbiome for future agriculture and to develop effective bio-fertilizers.


2021 ◽  
pp. 101397
Author(s):  
Anton V. Nazarov ◽  
Vladimir S. Chernysh ◽  
Andrey D. Zavilgelsky ◽  
Andrey A. Shemukhin ◽  
Alvaro Lopez-Cazalilla ◽  
...  

2021 ◽  
Author(s):  
Merve Bulut ◽  
Burak Erdeniz

Humans are very good at perceiving the sex of others by just glancing at their faces, but, it is still not well understood whether this ability can be generalized to faces from other-races or to non-humans. Therefore, the main purpose of this study is to test whether human adults could expand their sex categorization ability to faces that belongs to other-race and other-species. In order to examine this, 46 Caucasian participants were given a sex categorization task consisting of Caucasian (own-race), Asian (other-race) and chimpanzee (other-species) faces. Results showed that Caucasian faces were categorized significantly more accurately and quickly than Asian faces, and Asian faces categorized more accurately and quickly than chimpanzee faces, suggesting a strong other-race and other-species effect. Furthermore, consistent with previous literature, male faces were categorized more accurately and quickly compared to female faces. Moreover, facial metric analysis revealed that observers utilized eye height, brow to eye distance, and nose width distances during the sex categorization task for all three categories. Our results provide further evidence that similar facial metric cues were used to categorize the sex of other-race and other-species faces.


Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 924
Author(s):  
Carla Snyman ◽  
Julie Mekoue Nguela ◽  
Nathalie Sieczkowski ◽  
Matteo Marangon ◽  
Benoit Divol

The exogenous application of yeast-derived mannoproteins presents many opportunities for the improvement of wine technological and oenological properties. Their isolation from the cell wall of Saccharomycescerevisiae has been well studied. However, investigations into the efficiency of extraction methods from non-Saccharomyces yeasts are necessary to explore the heterogeneity in structure and composition that varies between yeast species, which may influence wine properties such as clarity and mouthfeel. In this study, nine yeast strains were screened for cell wall mannoprotein content using fluorescence microscopy techniques. Four species were subsequently exposed to a combination of mechanical and enzymatic extraction methods to optimize mannoprotein yield. Yeast cells subjected to 4 min of ultrasound treatment applied at 80% of the maximum possible amplitude with a 50% duty cycle, followed by an enzymatic treatment of 4000 U lyticase per g dry cells weight, showed the highest mannoprotein-rich yield from all species. Furthermore, preliminary evaluation of the obtained extracts revealed differences in carbohydrate/protein ratios between species and with increased enzyme incubation time. The results obtained in this study form an important step towards further characterization of extraction treatment impact and yeast species effect on the isolated mannoproteins, and their subsequent influence on wine properties.


Sign in / Sign up

Export Citation Format

Share Document