Transgenic grapevine rootstock clones expressing the coat protein or movement protein genes of Grapevine fanleaf virus: Characterization and reaction to virus infection upon protoplast electroporation

Plant Science ◽  
2006 ◽  
Vol 170 (4) ◽  
pp. 739-747 ◽  
Author(s):  
Laure Valat ◽  
Marc Fuchs ◽  
Monique Burrus
2013 ◽  
Vol 26 (2) ◽  
pp. 240-248 ◽  
Author(s):  
Carlos A. Angel ◽  
James E. Schoelz

In this study, we screened 22 Nicotiana spp. for resistance to the tombusviruses Tomato bushy stunt virus (TBSV), Cucumber necrosis virus, and Cymbidium ringspot virus. Eighteen species were resistant, and resistance was manifested in at least two different categories. In all, 13 species responded with a hypersensitive response (HR)-type resistance, whereas another five were resistant but either had no visible response or responded with chlorotic lesions rather than necrotic lesions. Three different TBSV proteins were found to trigger HR in Nicotiana spp. in an agroinfiltration assay. The most common avirulence (avr) determinant was the TBSV coat protein P41, a protein that had not been previously recognized as an avr determinant. A mutational analysis confirmed that the coat protein rather than the viral RNA sequence was responsible for triggering HR, and it triggered HR in six species in the Alatae section. The TBSV P22 movement protein triggered HR in two species in section Undulatae (Nicotiana glutinosa and N. edwardsonii) and one species in section Alatae (N. forgetiana). The TBSV P19 RNA silencing suppressor protein triggered HR in sections Sylvestres (N. sylvestris), Nicotiana (N. tabacum), and Alatae (N. bonariensis). In general, Nicotiana spp. were capable of recognizing only one tombusvirus avirulence determinant, with the exceptions of N. bonariensis and N. forgetiana, which were each able to recognize P41, as well as P19 and P22, respectively. Agroinfiltration failed to detect the TBSV avr determinants responsible for triggering HR in N. arentsii, N. undulata, and N. rustica. This study illustrates the breadth and variety of resistance responses to tombusviruses that exists in the Nicotiana genus.


2006 ◽  
Vol 151 (11) ◽  
pp. 2111-2122 ◽  
Author(s):  
N. K. Kouassi ◽  
L. Chen ◽  
C. Siré ◽  
M. Bangratz-Reyser ◽  
R. N. Beachy ◽  
...  

Virology ◽  
2013 ◽  
Vol 441 (2) ◽  
pp. 152-161 ◽  
Author(s):  
Gabriel Robles Luna ◽  
Eduardo José Peña ◽  
María Belén Borniego ◽  
Manfred Heinlein ◽  
Maria Laura Garcia

2002 ◽  
Vol 76 (7) ◽  
pp. 3554-3557 ◽  
Author(s):  
Emese Huppert ◽  
Dénes Szilassy ◽  
Katalin Salánki ◽  
Zoltán Divéki ◽  
Ervin Balázs

ABSTRACT A hybrid virus (CMVcymMP) constructed by replacing the movement protein (MP) of cucumber mosaic cucumovirus (CMV) with that of cymbidium ringspot tombusvirus (CymRSV) was viable and could efficiently spread both cell to cell and long distance in host plants. The hybrid virus was able to move cell to cell in the absence of functional CP, whereas CP-deficient CMV was restricted to single inoculated cells. In several Chenopodium and Nicotiana species, the symptom phenotype of the hybrid virus infection was clearly determined by the foreign MP gene. In Nicotiana debneyi and Nicotiana tabacum cv. Xanthi, the hybrid virus could move systemically, contrary to CymRSV.


Sign in / Sign up

Export Citation Format

Share Document