C1 metabolism plays an important role during formaldehyde metabolism and detoxification in petunia under liquid HCHO stress

2014 ◽  
Vol 83 ◽  
pp. 327-336 ◽  
Author(s):  
Wei Zhang ◽  
Lijuan Tang ◽  
Huiqun Sun ◽  
Shuang Han ◽  
Xinjia Wang ◽  
...  
Microbiology ◽  
2008 ◽  
Vol 154 (1) ◽  
pp. 296-305 ◽  
Author(s):  
Shondelle M. Wilson ◽  
Marshall P. Gleisten ◽  
Timothy J. Donohue

2019 ◽  
Author(s):  
Jessica A. Lee ◽  
Sergey Stolyar ◽  
Christopher J. Marx

AbstractMicroorganisms faces many barriers in the degradation of the polycyclic aromatic polymer lignin, one of which is an abundance of methoxy substituents. Demethoxylation of lignin-derived aromatic monomers in aerobic environments releases formaldehyde, a potent cellular toxin that organisms must eliminate in order to further degrade the aromatic ring. Here we provide the first comprehensive description of the ecology and evolution of the catabolism of methoxylated aromatics in the genus Methylobacterium, a plant-associated genus of methylotrophs capable of using formaldehyde for growth. Using comparative genomics, we found that the capacity for aromatic catabolism is ancestral to two clades, but has also been acquired horizontally by other members of the genus. Through laboratory growth assays, we demonstrated that several Methylobacterium strains can grow on p-hydroxybenzoate, protocatechuate, vanillate, and ferulate; furthermore, whereas non-methylotrophs excrete formaldehyde as a byproduct during growth on vanillate, Methylobacterium do not. Finally, we surveyed published metagenome data to find that vanillate-degrading Methylobacterium can be found in many soil and rhizosphere ecosystems but is disproportionately prominent in the phyllosphere, and the most highly represented clade in the environment (the root-nodulating species M. nodulans) is one with few cultured representatives.


Author(s):  
Saniya Sahar

Abstract: Pregnancy represents a period of fast tissue growth of maternal and foetal tissues that's related to enhanced energy and nutrient needs. Maternal nutrition throughout gestation period, has being essential for best offspring development, reducing long unwellness burden and for general health throughout life. Maternal Folate throughout pregnancy might have numerous roles in offspring health, as well as neurodevelopment and psychological feature performance in childhood. Folate is crucial for C1 metabolism, a network of pathways concerned in many biological processes as well as nucleotide synthesis, deoxyribonucleic acid repair and methylation reactions. The periconceptional use of pteroylglutamic acid (Folic Acid ) containing supplements reduces the primary incidence, as well as recurrence of neural tube defects. Folic Acid (FA) are artificial form of a necessary vitamin generically considered Folates or B9. It is concerned in one-carbon metabolism, and it's been connected to lowering neural tube Defect (NTD). National programs to mandate fortification of food with Folic Acid have reduced the prevalence of NTDs worldwide . The indisputable protecting role of Folic Acid in the hindrance of NTD, in addition to the low compliance of women to Folic Acid recommendations, has aroused the choice of mandatory Folic Acid fortification, a policy currently in place in over eighty countries worldwide. Mandatory food fortification needs food makers to feature Folic Acid to certain foods (e.g. starch or grain products), whereas voluntary fortification permits Folic Acid to be added to foods at the discretion of manufacturers. Food fortification with Folic Acid because the intervention is likely to achieve increasing Folic Acid intake among populations throughout the world. The objective of this article is to discuss the Role of Folic Acid and Folate during pregnancy and to review the role of Folate and Folic Acid , metabolism , absorption and Folic Acid effects on maternal on the basis of recent findings that are important for implementation of fortified food to design future studies. Keywords: Neurodevelopment, Methylation Reactions, Pteroylglutamic Acid, Bioavailability, Monoglutamates.


2021 ◽  
Vol 12 ◽  
Author(s):  
Harshit Malhotra ◽  
Sukhjeet Kaur ◽  
Prashant S. Phale

Carbamate pesticides are widely used as insecticides, nematicides, acaricides, herbicides and fungicides in the agriculture, food and public health sector. However, only a minor fraction of the applied quantity reaches the target organisms. The majority of it persists in the environment, impacting the non-target biota, leading to ecological disturbance. The toxicity of these compounds to biota is mediated through cholinergic and non-cholinergic routes, thereby making their clean-up cardinal. Microbes, specifically bacteria, have adapted to the presence of these compounds by evolving degradation pathways and thus play a major role in their removal from the biosphere. Over the past few decades, various genetic, metabolic and biochemical analyses exploring carbamate degradation in bacteria have revealed certain conserved themes in metabolic pathways like the enzymatic hydrolysis of the carbamate ester or amide linkage, funnelling of aryl carbamates into respective dihydroxy aromatic intermediates, C1 metabolism and nitrogen assimilation. Further, genomic and functional analyses have provided insights on mechanisms like horizontal gene transfer and enzyme promiscuity, which drive the evolution of degradation phenotype. Compartmentalisation of metabolic pathway enzymes serves as an additional strategy that further aids in optimising the degradation efficiency. This review highlights and discusses the conclusions drawn from various analyses over the past few decades; and provides a comprehensive view of the environmental fate, toxicity, metabolic routes, related genes and enzymes as well as evolutionary mechanisms associated with the degradation of widely employed carbamate pesticides. Additionally, various strategies like application of consortia for efficient degradation, metabolic engineering and adaptive laboratory evolution, which aid in improvising remediation efficiency and overcoming the challenges associated with in situ bioremediation are discussed.


1972 ◽  
Vol 128 (1) ◽  
pp. 29-40 ◽  
Author(s):  
M. T. Clandinin ◽  
E. A. Cossins

1. Mitochondria were extracted from 4-day-old pea cotyledons and purified on a sucrose density gradient. 2. Microbiological assay of the purified mitochondrial fraction with Lactobacillus casei (A.T.C.C. 7469), Streptococcus faecalis (A.T.C.C. 8043) and Pediococcus cerevisiae (A.T.C.C. 8081) revealed a discrete pool of conjugated and unconjugated derivatives of tetrahydropteroylglutamic acid. 3. Solubilization and chromatographic studies of the mitochondrial fraction demonstrated the presence of formylated and methylated derivatives, 10-formyltetrahydropteroylmonoglutamic acid, 5-formyltetrahydropteroylmonoglutamic acid and 5-formyltetrahydropteroyldiglutamic acid being the major derivatives present. 4. The principal mitochondrial pteroylglutamates were labelled when dry seeds were allowed to imbibe [2-14C]pteroylglutamic acid and 5-[methyl-14C]-methyltetrahydropteroylmonoglutamic acid. 5. The ability of isolated mitochondria to catalyse oxidation and reduction of tetrahydropteroylglutamic acid derivatives was demonstrated in feeding experiments in which [14C]formaldehyde, [3-14C]serine, sodium [14C]formate, 5-[methyl-14C]methyltetrahydropteroylmonoglutamic acid or [2-14C]-glycine served as C1 donor. In addition,14C was incorporated into free amino acids related to C1 metabolism.


1992 ◽  
Vol 12 (4) ◽  
pp. 1412-1421
Author(s):  
C R McClung ◽  
C R Davis ◽  
K M Page ◽  
S A Denome

Serine hydroxymethyltransferase (SHMT) occupies a central position in one-carbon (C1) metabolism, catalyzing the reaction of serine and tetrahydrofolate to yield glycine and 5,10-methylenetetrahydrofolate. Methylenetetrahydrofolate serves as a donor of C1 units for the synthesis of numerous compounds, including purines, thymidylate, lipids, and methionine. We provide evidence that the formate (for) locus of Neurospora crassa encodes cytosolic SHMT. The for+ gene was localized to a 2.8-kb BglII fragment by complementation (restoration to formate-independent growth) of a strain carrying a recessive for allele, which confers a growth requirement for formate. The for+ gene encodes a polypeptide of 479 amino acids which shows significant similarity to amino acid sequences of SHMT from bacterial and mammalian sources (47 and 60% amino acid identity, respectively). The for+ mRNA has several different start and stop sites. The abundance of for+ mRNA increased in response to amino acid imbalance induced by glycine supplementation, suggesting regulation by the N. crassa cross-pathway control system, which is analogous to general amino acid control in Saccharomyces cerevisiae. This was confirmed by documenting that for+ expression increased in response to histidine limitation (induced by 3-amino-1,2,4-triazole) and that this response was dependent on the presence of a functional cross-pathway control-1 (cpc-1) gene, which encodes CPC1, a positively acting transcription factor. There are at least five potential CPC1 binding sites upstream of the for+ transcriptional start, as well as one that exactly matches the consensus CPC1 binding site in the first intron of the for+ gene.


1996 ◽  
pp. 126-132 ◽  
Author(s):  
N. Harms ◽  
J. Ras ◽  
S. Koning ◽  
W. N. M. Reijnders ◽  
A. H. Stouthamer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document