metabolism regulation
Recently Published Documents


TOTAL DOCUMENTS

430
(FIVE YEARS 203)

H-INDEX

31
(FIVE YEARS 8)

2022 ◽  
Vol 2 (1) ◽  
pp. 1-6
Author(s):  
EFTHIMIOS KYRODIMOS ◽  
ARISTEIDIS CHRYSOVERGIS ◽  
NICHOLAS MASTRONIKOLIS ◽  
EVANGELOS TSIAMBAS ◽  
LOUKAS MANAIOS ◽  
...  

Among intra-cellular homeostasis mechanisms, ubiquitination plays a critical role in protein metabolism regulation by degrading proteins via activating a broad spectrum of ubiquitin chains. In fact, ubiquitination and sumoylation signaling pathways are characterized by increased complexity regarding the molecules and their interactions. The Ubiquitin-Proteasome System (Ub-PS) recognizes and targets a broad spectrum of protein substrates. Ubiquitin conjugation modifies each substrate protein determining its biochemical fate (degradation). A major functional activity of Ub-PS is autophagy mechanism regulation. Interestingly, Ub-PS promotesall stages of bulk autophagy (initiation, execution, and termination). Autophagy is a crucial catabolic process that provides protein degradation and for this reason the interaction with Ub-PS is crucial. Furthermore, ubiquitination controls and regulates specific types of protein targets. Ub-PS is also involved in oxidative cellular stress and DNA damage response. Additionally, the functional role of Ub-PS in ribosome machinery regulation seems to be crucial. Concerning carcinogenesis, Ub-PS is involved in malignant disease development and progression by negatively affecting the corresponding TGF-B-, MEEK/MAPK/ERK-JNK- dependent signaling pathways. In the current review article, we describe the role of Ub-PSbiochemicalmodifications and alterations in oral squamous cell carcinoma (OSCC).


2021 ◽  
Vol 26 (4) ◽  
pp. 175
Author(s):  
Erdianty Setiabudi ◽  
Karlia Meitha ◽  
Fenny Martha Dwivany

Banana is one of the most important commodities for maintaining global food security. Primary metabolic processes during the ripening of banana greatly affect post‐harvest quality, particularly in starch metabolism. The beta‐ amylase (BAM) gene family is known as a group of genes that plays an important role in starch metabolism regulation. In this study, we focused on the characterization and comparative analysis of the BAM gene family in DH Pahang and Pisang Klutuk Wulung (PKW) varieties, these being the AA and BB genomes, respectively. The sequences of BAM gene family were retrieved from the database of Musa acuminata ’DH Pahang’ and Musa balbisiana ’PKW’ genome, then structural and functional characterization was performed, followed by identification of cis‐acting elements in the BAM promoter regions. The results showed that the BAM gene family structure was relatively conserved in both genomes, and a putative BAM11 gene was found, the function of which has not been studied in other plants. Cis‐acting element analysis showed that they were distinct in the copy number and types of elements that were responsive to various phytohormones. This study suggested that the BAM genes involved in ripening are spatiotemporally regulated. However, further functional genomic analysis is required to describe the specific role and regulation of BAM genes during ripening in banana.


Immuno ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 1-12
Author(s):  
Emanuele Gotelli ◽  
Sabrina Paolino ◽  
Stefano Soldano ◽  
Maurizio Cutolo

Active vitamin D is a true steroid hormone with pleiotropic biological effects that go beyond the classical concept of bone metabolism regulation. In fact, adequate serum levels of 25-hydroxyvitamin D (>40 ng/mL) are required to support several biological functions, including the control of innate and adaptive immunity in course of infectious, inflammatory and autoimmune diseases. SARS-CoV-2 is responsible for the COVID-19 pandemic and deficient/insufficient serum levels of 25-hydroxyvitamin D are reported in very large cohorts of patients. Of note, vitamin D is involved in different pathophysiological processes, such as expression of SARS-CoV-2 receptor (ACE2), activation of innate (neutrophils with their extracellular traps, monocytes/macrophages, dendritic cells, natural killer cells) and adaptive (T and B lymphocytes) immune cells and clinical manifestations, such as coagulation/thrombotic disorders and acute respiratory distress syndrome. Randomized clinical trials regarding vitamin D supplementation in COVID-19 patients have shown favorable effects on the control of inflammation markers, arterial oxygen saturation/inspired fraction of oxygen ratio, admission to hospital intensive care units and mortality. A target of serum 25-hydroxyvitamin D > 50 ng/mL has been identified as protective for the course of COVID-19, potentially playing an ancillary role in the treatment of the disease.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xifeng Xiong ◽  
Nan Tang ◽  
Xudong Lai ◽  
Jinli Zhang ◽  
Weilun Wen ◽  
...  

Amentoflavone is an active phenolic compound isolated from Selaginella tamariscina over 40 years. Amentoflavone has been extensively recorded as a molecule which displays multifunctional biological activities. Especially, amentoflavone involves in anti-cancer activity by mediating various signaling pathways such as extracellular signal-regulated kinase (ERK), nuclear factor kappa-B (NF-κB) and phosphoinositide 3-kinase/protein kinase B (PI3K/Akt), and emerges anti-SARS-CoV-2 effect via binding towards the main protease (Mpro/3CLpro), spike protein receptor binding domain (RBD) and RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2. Therefore, amentoflavone is considered to be a promising therapeutic agent for clinical research. Considering the multifunction of amentoflavone, the current review comprehensively discuss the chemistry, the progress in its diverse biological activities, including anti-inflammatory, anti-oxidation, anti-microorganism, metabolism regulation, neuroprotection, radioprotection, musculoskeletal protection and antidepressant, specially the fascinating role against various types of cancers. In addition, the bioavailability and drug delivery of amentoflavone, the molecular mechanisms underlying the activities of amentoflavone, the molecular docking simulation of amentoflavone through in silico approach and anti-SARS-CoV-2 effect of amentoflavone are discussed.


2021 ◽  
Vol 8 ◽  
Author(s):  
Zheng-Yong Wen ◽  
Chuan-Jie Qin ◽  
Yun-Yun Lv ◽  
Yan-Ping Li ◽  
Yuan-Chao Zou ◽  
...  

Potassium channels are important for K+ transport and cell volume regulation, which play important roles in many biological processes such as hormone secretion, ion homeostasis, excitability, and cell development. In mammals, a total of 15 potassium channels were identified and they were divided into six subfamilies, including TALK (TALK1, TALK2, TASK2), TASK (TASK1, TASK3, TASK5), TREK (TREK1, TREK2, TRAAK), TWIK (TWIK1, TWIK2, KCNK7), THIK (THIK1, THIK2) and TRESK. TASK1, also known as potassium channel subfamily k member 3 (KCNK3), is the first member identified in the TASK subfamily. This K2P channel has potential applications in fish breeding and aquaculture industry due to its important roles in various physiological processes. Despite its functional role has been well studied in mammals; however, it is less known in fishes. In this review, we systematically summarize recent research advances of this critical potassium channel in representative fishes, such as gene number variation, tissue distribution, phylogeny, and potential homeostasis regulation role. This paper provides novel insights into the functional properties of these fish kcnk3 genes (including osmoregulation, energy homeostasis maintenance and fatty acids metabolism regulation), and also expands our knowledge about their variations among diverse fishes.


2021 ◽  
Vol 11 ◽  
Author(s):  
Chao Xu ◽  
Keying Zhang ◽  
Fa Yang ◽  
Xiang Zhou ◽  
Shaojie Liu ◽  
...  

BackgroundThe tumor microenvironment (TME) plays an important role in the progression of renal cell carcinoma (RCC). Cancer-associated fibroblasts (CAFs) are considered to constitute a major component of the TME and participate in various tumor-promoting molecular events. We have previously confirmed that CD248 represents a promising biomarker of CAFs, which may provide insight into CAF-based tumor-promoting effects. However, CAF-mediated tumor progression and the potential mechanism of CD248 remain largely unknown in RCC patients.MethodsExpression profiling and clinical data of RCC patients were obtained from The Cancer Genome Atlas (TCGA) database. An MCP-counter algorithm and Kaplan–Meier survival analysis were performed to explore the prognostic value of CAFs and CD248, respectively. A Pearson correlation coefficient test and Student’s t-test were employed to evaluate the relationship between immunosuppressive TME and CD248 or CAFs. Immunohistochemistry and immunofluorescence staining were performed to confirm CD248 expression within CAFs. CD248-specific siRNA was used to investigate the potential function of CD248 in CAF tumor promotion. Differentially expressed genes (DEGs), weighted gene co-expression network analysis (WGCNA), and enrichment analysis were conducted to clarify the function of CD248+ CAFs in RCC progression and the associated regulatory mechanism.ResultsCD248 overexpression and CAF infiltration could predict poor RCC prognosis, which may involve the immunosuppressive TME. CD248 may serve as a promising CAFs biomarker and be involved with the tumor-promoting effect of CAFs. Moreover, CD248+ CAF infiltration may contribute to RCC progression and an immunosuppressive TME through cell-extracellular matrix (ECM) interactions and metabolism regulation.ConclusionCD248+ CAFs participate in the regulation of RCC progression and immunosuppressive TME, which may represent a novel prognostic and therapeutic target for RCC.


2021 ◽  
Vol 22 (24) ◽  
pp. 13340
Author(s):  
Magdalena Modrzejewska ◽  
Adam Kawalek ◽  
Aneta Agnieszka Bartosik

The regulatory network of gene expression in Pseudomonas aeruginosa, an opportunistic human pathogen, is very complex. In the PAO1 reference strain, about 10% of genes encode transcriptional regulators, many of which have undefined regulons and unknown functions. The aim of this study is the characterization of PA2577 protein, a representative of the Lrp/AsnC family of transcriptional regulators. This family encompasses proteins involved in the amino acid metabolism, regulation of transport processes or cell morphogenesis. The transcriptome profiling of P. aeruginosa cells with mild PA2577 overproduction revealed a decreased expression of the PA2576 gene oriented divergently to PA2577 and encoding an EamA-like transporter. A gene expression analysis showed a higher mRNA level of PA2576 in P. aeruginosa ΔPA2577, indicating that PA2577 acts as a repressor. Concomitantly, ChIP-seq and EMSA assays confirmed strong interactions of PA2577 with the PA2577/PA2576 intergenic region. Additionally, phenotype microarray analyses indicated an impaired metabolism of ΔPA2576 and ΔPA2577 mutants in the presence of polymyxin B, which suggests disturbances of membrane functions in these mutants. We show that PA2576 interacts with two proteins, PA5006 and PA3694, with a predicted role in lipopolysaccharide (LPS) and membrane biogenesis. Overall, our results indicate that PA2577 acts as a repressor of the PA2576 gene coding for the EamA-like transporter and may play a role in the modulation of the cellular response to stress conditions, including antimicrobial peptides, e.g., polymyxin B.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Jie Yang ◽  
Dachuan Gu ◽  
Shuhua Wu ◽  
Xiaochen Zhou ◽  
Jiaming Chen ◽  
...  

AbstractTea plants are subjected to multiple stresses during growth, development, and postharvest processing, which affects levels of secondary metabolites in leaves and influences tea functional properties and quality. Most studies on secondary metabolism in tea have focused on gene, protein, and metabolite levels, whereas upstream regulatory mechanisms remain unclear. In this review, we exemplify DNA methylation and histone acetylation, summarize the important regulatory effects that epigenetic modifications have on plant secondary metabolism, and discuss feasible research strategies to elucidate the underlying specific epigenetic mechanisms of secondary metabolism regulation in tea. This information will help researchers investigate the epigenetic regulation of secondary metabolism in tea, providing key epigenetic data that can be used for future tea genetic breeding.


Sign in / Sign up

Export Citation Format

Share Document