Slow-release Zn application through Zn-chitosan nanoparticles in wheat to intensify source activity and sink strength

Author(s):  
Ashok Kumar ◽  
Damyanti Prajapati ◽  
Khaidem Aruna Devi ◽  
Ajay Pal ◽  
Urmila choudhary ◽  
...  
Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 449
Author(s):  
Ahmed M. Omer ◽  
Zyta M. Ziora ◽  
Tamer M. Tamer ◽  
Randa E. Khalifa ◽  
Mohamed A. Hassan ◽  
...  

An effective drug nanocarrier was developed on the basis of a quaternized aminated chitosan (Q-AmCs) derivative for the efficient encapsulation and slow release of the curcumin (Cur)-drug. A simple ionic gelation method was conducted to formulate Q-AmCs nanoparticles (NPs), using different ratios of sodium tripolyphosphate (TPP) as an ionic crosslinker. Various characterization tools were employed to investigate the structure, surface morphology, and thermal properties of the formulated nanoparticles. The formulated Q-AmCs NPs displayed a smaller particle size of 162 ± 9.10 nm, and higher surface positive charges, with a maximum potential of +48.3 mV, compared to native aminated chitosan (AmCs) NPs (231 ± 7.14 nm, +32.8 mV). The Cur-drug encapsulation efficiency was greatly improved and reached a maximum value of 94.4 ± 0.91%, compared to 75.0 ± 1.13% for AmCs NPs. Moreover, the in vitro Cur-release profile was investigated under the conditions of simulated gastric fluid [SGF; pH 1.2] and simulated colon fluid [SCF; pH 7.4]. For Q-AmCs NPs, the Cur-release rate was meaningfully decreased, and recorded a cumulative release value of 54.0% at pH 7.4, compared to 73.0% for AmCs NPs. The formulated nanoparticles exhibited acceptable biocompatibility and biodegradability. These findings emphasize that Q-AmCs NPs have an outstanding potential for the delivery and slow release of anticancer drugs.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Nuwanthi P. Katuwavila ◽  
A. D. L. Chandani Perera ◽  
Sameera R. Samarakoon ◽  
Preethi Soysa ◽  
Veranja Karunaratne ◽  
...  

A chitosan-alginate nanoparticle system encapsulating doxorubicin (DOX) was prepared by a novel ionic gelation method using alginate as the crosslinker. These nanoparticles were around 100 nm in size and more stable with higher positive zeta potential and had higher % encapsulation efficiency (95%) than DOX loaded chitosan nanoparticles (DOX Csn NP) crosslinked with sodium tripolyphosphate (STPP). FTIR spectroscopy and thermogravimetric analysis revealed successful loading of DOX.In vitrodrug release showed an initial release phase followed by slow release phase with higher cumulative release obtained with DOX loaded chitosan-alginate nanoparticles (DOX Csn-Alg NP). Thein vitrocytotoxicity of DOX released from the two nanoparticle systems showed a notable difference on comparison with that of free DOX on the MCF-7 cell line. The SRB assay, AO/EB staining, and fluorescence uptake study indicated that free DOX only showed dose dependent cytotoxicity, whereas both dose and time dependency were exhibited by the two sets of NPs. While both systems show sustained release of DOX, from the cell viability plots, DOX Csn-Alg NPs showed their superiority over DOX Csn NPs. The results obtained are useful for developing DOX Csn-Alg NPs as a sustained release carrier system for DOX.


Diabetes ◽  
1983 ◽  
Vol 32 (5) ◽  
pp. 478-481 ◽  
Author(s):  
M. F. Goosen ◽  
Y. F. Leung ◽  
G. M. O'Shea ◽  
S. Chou ◽  
A. M. Sun
Keyword(s):  

2019 ◽  
Vol 38 (2) ◽  
pp. 385 ◽  
Author(s):  
Marwa M. El-Naggar ◽  
Wael S. I. Abou-Elmagd ◽  
Ashraf Suloma ◽  
Hamza A. El-Shabaka ◽  
Magdy T. Khalil ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document