scholarly journals Formulation of Quaternized Aminated Chitosan Nanoparticles for Efficient Encapsulation and Slow Release of Curcumin

Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 449
Author(s):  
Ahmed M. Omer ◽  
Zyta M. Ziora ◽  
Tamer M. Tamer ◽  
Randa E. Khalifa ◽  
Mohamed A. Hassan ◽  
...  

An effective drug nanocarrier was developed on the basis of a quaternized aminated chitosan (Q-AmCs) derivative for the efficient encapsulation and slow release of the curcumin (Cur)-drug. A simple ionic gelation method was conducted to formulate Q-AmCs nanoparticles (NPs), using different ratios of sodium tripolyphosphate (TPP) as an ionic crosslinker. Various characterization tools were employed to investigate the structure, surface morphology, and thermal properties of the formulated nanoparticles. The formulated Q-AmCs NPs displayed a smaller particle size of 162 ± 9.10 nm, and higher surface positive charges, with a maximum potential of +48.3 mV, compared to native aminated chitosan (AmCs) NPs (231 ± 7.14 nm, +32.8 mV). The Cur-drug encapsulation efficiency was greatly improved and reached a maximum value of 94.4 ± 0.91%, compared to 75.0 ± 1.13% for AmCs NPs. Moreover, the in vitro Cur-release profile was investigated under the conditions of simulated gastric fluid [SGF; pH 1.2] and simulated colon fluid [SCF; pH 7.4]. For Q-AmCs NPs, the Cur-release rate was meaningfully decreased, and recorded a cumulative release value of 54.0% at pH 7.4, compared to 73.0% for AmCs NPs. The formulated nanoparticles exhibited acceptable biocompatibility and biodegradability. These findings emphasize that Q-AmCs NPs have an outstanding potential for the delivery and slow release of anticancer drugs.

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Nuwanthi P. Katuwavila ◽  
A. D. L. Chandani Perera ◽  
Sameera R. Samarakoon ◽  
Preethi Soysa ◽  
Veranja Karunaratne ◽  
...  

A chitosan-alginate nanoparticle system encapsulating doxorubicin (DOX) was prepared by a novel ionic gelation method using alginate as the crosslinker. These nanoparticles were around 100 nm in size and more stable with higher positive zeta potential and had higher % encapsulation efficiency (95%) than DOX loaded chitosan nanoparticles (DOX Csn NP) crosslinked with sodium tripolyphosphate (STPP). FTIR spectroscopy and thermogravimetric analysis revealed successful loading of DOX.In vitrodrug release showed an initial release phase followed by slow release phase with higher cumulative release obtained with DOX loaded chitosan-alginate nanoparticles (DOX Csn-Alg NP). Thein vitrocytotoxicity of DOX released from the two nanoparticle systems showed a notable difference on comparison with that of free DOX on the MCF-7 cell line. The SRB assay, AO/EB staining, and fluorescence uptake study indicated that free DOX only showed dose dependent cytotoxicity, whereas both dose and time dependency were exhibited by the two sets of NPs. While both systems show sustained release of DOX, from the cell viability plots, DOX Csn-Alg NPs showed their superiority over DOX Csn NPs. The results obtained are useful for developing DOX Csn-Alg NPs as a sustained release carrier system for DOX.


Author(s):  
S. PATHAK ◽  
S. P. VYAS ◽  
A. PANDEY

Objective: The objective of the present study was to develop, optimize, and evaluate Ibandronate-sodium loaded chitosan nanoparticles (Ib-CS NPs) to treat osteoporosis. Methods: NPs were prepared by the Ionic gelation method and optimized for various parameters such as the effect of concentration of chitosan, sodium tripolyphosphate (TPP), and pH effect on particle size polydispersity index (PDI), zeta potential, and entrapment efficiency. The prepared nanoparticles were characterized using particle size analyzer (DLS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and Fourier-Transform Infrared spectroscopy (FTIR).  Results: Formulated NPs were obtained in the average nano size in the range below 200 nm in TEM, SEM, and DLS studies. The particle size and encapsulation efficiency of the optimized formulation were 176.1 nm and 63.28%, respectively. The release profile of NPs was depended on the dissolution medium and followed the First-order release kinetics. Conclusion: Bisphosphonates are the most commonly prescribed drugs for treating osteoporosis in the US and many other countries, including India. Ibandronate is a widely used anti-osteoporosis drug, exhibits a strong inhibitory effect on bone resorption performed by osteoclast cells. Our results indicated that Ibandronate sodium-loaded chitosan nanoparticles provide an effective medication for the treatment of osteoporosis.


Cosmetics ◽  
2018 ◽  
Vol 5 (3) ◽  
pp. 53 ◽  
Author(s):  
Joana Ramis ◽  
Catarina Coelho ◽  
Alba Córdoba ◽  
Paulo Quadros ◽  
Marta Monjo

Hydroxyapatite nanoparticles (HAP-NP) are incorporated in oral care products such as toothpastes and mouthwashes to treat dental sensitivity or to promote enamel remineralisation. Despite the good performance of HAP-NP in this application, it is important to ensure its safety for consumers. For that reason, the Scientific Committee on Consumer Safety (SCCS) evaluated the safety of HAP-NP as an oral care ingredient, but the issued opinion was not completely conclusive and the SCCS recommended that additional tests should be performed. Here, we used a commercially available human gingival epithelium (HGE) as a non-animal alternative and MTT cell viability, LDH activity, and IL-1alpha production were evaluated after 3.1% HAP-NP treatment for 10 min, 1 h, and 3 h. Moreover, the absorption of HAP-NP in the gingival tissue was assessed by transmission electron microscopy (TEM) analysis. Finally, the dissolution behaviour of HAP-NP in simulated gastric fluid was also investigated. No deleterious effect was observed for HGE tissues incubated with HAP-NP for all time-points and parameters evaluated. Moreover, a complete dissolution of 3.1% HAP-NP in simulated gastric fluid was observed after 7.5 min at 37 °C. In conclusion, our results evidence the safety of HAP-NP for oral care products with the use of an in vitro replacement alternative for human gingival epithelium and a simulated gastric fluid assay.


Author(s):  
Putra Imwa ◽  
Kusumawati Igaw

Objective: As an antidiabetic drug, metformin hydrochloride (HCl) has been well known to possess low oral bioavailability and short half-life. In this study, we prepared the drug delivery system (DDS) of metformin HCl and clinoptilolite as its carrier. The in vitro drug release profile was further investigated.Methods: DDS was made by encapsulating metformin HCl on clinoptilolite using the wet impregnation method at various pH and initial concentration of metformin HCl. Fourier transform infrared spectrometer (FTIR), X-ray diffractometer (XRD), and N2 Sorption Analyzer were used to characterize the as-synthesized DDS. Drug release study was conducted by stirring the DDS in simulated gastric fluid and simulated intestinal fluid over 12 h.Results: The encapsulation process was achieved optimally at pH 7.0 and initial concentration of metformin HCl of 300 mg/l (CLI2-300 denoted DDS). The results of FTIR and N2 sorption analyzer confirmed the existence of metformin HCl on clinoptilolites. Meanwhile, the XRD result showed that the crystallinity of clinoptilolites remained unchanged after the encapsulation process. The cumulative drug release in the simulated gastric fluid was found to be higher than that in the simulated intestinal fluid, which indicated the potent influence of pH on the release properties of the drugs. The drug release kinetics of metformin HCl from clinoptilolite was best fitted into the Korsmeyer-Peppas model with non-Fickian transport mechanism.Conclusion: We found that clinoptilolite was suitable for DDS application, particularly as a carrier of metformin HCl.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1624
Author(s):  
Lili Qin ◽  
Xinyu Zhao ◽  
Yiwei He ◽  
Hongqiang Wang ◽  
Hanjing Wei ◽  
...  

Resveratrol is a natural active ingredient found in plants, which is a polyphenolic compound and has a variety of pharmaceutical uses. Resveratrol-loaded TEMPO-oxidized cellulose aerogel (RLTA) was prepared using a freeze-drying method, employing high speed homogenization followed by rapid freezing with liquid nitrogen. RLTAs were designed at varying drug–cellulose aerogel ratios (1:2, 2:3, 3:2, and 2:1). It could be seen via scanning electron microscopy (SEM) that Res integrated into TEMPO-oxidized cellulose (TC) at different ratios, which changed its aggregation state and turned it into a short rod-like structure. Fourier transform infrared (FTIR) spectra confirmed that the RLTAs had the characteristic peaks of TC and Res. In addition, X-ray diffraction (XRD) demonstrated that the grain size of RLTA was obviously smaller than that of pure Res. RLTAs also had excellent stability in both simulated gastric fluid and phosphate buffer solution. The drug release rate was initially completed within 5 h under a loading rate of 30.7 wt%. The results of an MTT assay showed the low toxicity and good biocompatibility of the RLTAs. TC aerogel could be a promising drug carrier that may be widely used in designing and preparing novel biomedicine.


Bio-Research ◽  
2020 ◽  
Vol 18 (2) ◽  
Author(s):  
EB Onuigbo ◽  
C Anozie-Ikeanyi ◽  
NE Edeh ◽  
CO Eze ◽  
TH Gugu

The study seeks to evaluate nanoparticles based on chitosan for enhanced delivery of ampicillin in plasmid-mediated drug resistance. Serial dilutions of a mixed population of E. coli was plated on nutrient agar and streaked on Replica-plate 25 random colonies using MacConkey agar with or without ampicillin (100 µg/ml) daily for 96 h. Nanoparticles were prepared by cross-linking chitosan with sodium tripolyphosphate with ampicillin trihydrate adsorbed. Three different batches were prepared for optimization. The nanoparticles were optimized based on encapsulation efficiency, in vitro drug release, pH stability and microbiological assay using two laboratory strains of E. coli. Increased resistance to ampicillin due to possible plasmid transfer was established in vitro after 96 h. The encapsulation efficiency of the three batches was between 21-57 %. The drug release showed a burst effect and slow extended release over 8 h and reached a peak of about 19 % release at the 6 and 7 h in Batch A, B and C. The pH of the particles was stable over a period of 6 d. The nanoparticles containing only 0.075 mg of ampicillin dropped in an agar well plate inoculated with 1 ml of E. coli J62 lac pro trp hispFlac::Tn3 (AmpR) gave an IZD of ≥ 25 mm. Chitosan nanoparticles holds good potentials in potentiating the antibacterial effect of ampicillin against possible plasmid-mediated drug resistance


2012 ◽  
Vol 499 ◽  
pp. 99-103
Author(s):  
Jun Chang ◽  
Cheng Wu Li ◽  
Gang Li

A series of polyesters containing 5-fluorouracil in the main chain were prepared by reacting potassium salt of 5-fluorouracil with different molecular weight ω-chloroalkyl chloroacetyl esters.The copolymers were characterized by FT-IR, 1H-NMR, VPO and UV spectroscopy. The drug release profile in vitro of the copolymers were studied, the results showed prodrug could slow release 5-FU or 5-FU units in different solution, they may be likely to become potential antitumor prodrug.


2011 ◽  
Vol 282-283 ◽  
pp. 539-544 ◽  
Author(s):  
Jia Lei Li ◽  
Yuan Gang Zu ◽  
Xiu Hua Zhao ◽  
Zhi Gang An ◽  
Xiao Yu Sui ◽  
...  

Epigallocatechin-3-gallate (EGCG), a principal polyphenolic, which is most abundant and active component in tea. It is considered key to these healthful qualities. However, EGCG used in clinical application which is still shortcomings of short half-life and low bioavailability. Chitosan (CS) has been widely used in pharmaceutical and medical areas, particularly for its potential in the development of controlled release drug delivery systems due to its well properties. In this study, we prepared EGCG-loaded chitosan nanoparticles by ionic polymeric method using sodium tripolyphosphate(TPP) as ionic polymeric agent successfully. Results controlled conditions (concentration of CS, 2 mg/mL; pH = 5.4; volume of TPP(0.5 mg/mL), 6.6 mL; amount of EGCG, 15 mg; ionic polymeric time, 24 h at room temperature (0.5 mL/min))volume of TPP(0.5 mg/mL), 6.6 mL; amount of EGCG, 15 mg; ionic polymeric time, 24 h at room temperature (0.5 mL/min)) for entrapment efficiency, loading efficiency, mean particle size and Zeta potential, were found to be 62.3 %, 33.8 %, 141.5 ± 0.4 nm and -31.21 ± 0.54 mV, respectively, and CS-EGCG-NPS have well property of sustained release.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Vasily V. Smirnov ◽  
Victoria V. Golovchenko ◽  
Fedor V. Vityazev ◽  
Olga A. Patova ◽  
Nikolay Yu. Selivanov ◽  
...  

The antioxidant properties of vegetable pectin fractions against intraluminal reactive oxygen species were elucidated in vitro in conjunction with their structural features. The pectin fractions were isolated using a simulated gastric fluid (pH 1.5, pepsin 0.5 g/L, 37°C, 4 h) from fresh white cabbage, carrot, onion, and sweet pepper. The fraction from onion was found to inhibit the production of superoxide radicals by inhibiting the xanthine oxidase. The high molecular weight of onion pectin and a large number of galactose residues in its side chains appeared to participate in interaction with xanthine oxidase. All the isolated pectic polysaccharides were found to be associated with protein (2–9%) and phenolics (0.5–0.7%) as contaminants; these contaminants were shown to be responsible for the antioxidant effect of vegetable pectin fractions against the hydroxyl and 1,1-diphenyl-2-picrylhydrazyl radicals.


2002 ◽  
Vol 30 (6) ◽  
pp. 913-915 ◽  
Author(s):  
G. J. Murtagh ◽  
M. Dumoulin ◽  
D. B. Archer ◽  
M. J. Alcocer

Two well known 2 S albumins, Ber e 1 from brazil nut and sunflower 2 S albumin 8 (SFA-8), have been expressed in a eukaryotic system and purified. Analysis of recombinant versions of Ber e 1 and SFA-8 revealed them to be significantly more resistant to digestion by pepsin than BSA, and to be stable for up to 30 min in simulated gastric fluid. Unfolding monitored by CD indicated that both proteins were also very resistant to denaturation induced by heat and low pH. These results suggest that, although the ability of 2 S albumins to reach the circulatory system may be a prerequisite for the allergenicity of this group of proteins, stability is just one of a number of characteristics that provoke a selective immune response.


Sign in / Sign up

Export Citation Format

Share Document