Ultrasonographic Evaluation for the Effect of Extracorporeal Shock Wave Therapy on Gastrocnemius Muscle Spasticity in Patients With Chronic Stroke

PM&R ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 363-371 ◽  
Author(s):  
Chang Han Lee ◽  
Seung Hun Lee ◽  
Jun‐Il Yoo ◽  
Shi‐Uk Lee
Children ◽  
2021 ◽  
Vol 8 (11) ◽  
pp. 1059
Author(s):  
Dong Rak Kwon ◽  
Dae Gil Kwon

Therapeutic strategies to boost the effect of botulinum toxin may lead to some advantages, such as long lasting effects, the injection of lower botulinum toxin dosages, fewer side effects, and lower costs. The aim of this study is to investigate the combined effect of botulinum toxin A (BTA) injection and extracorporeal shock wave therapy (ESWT) for the treatment of spasticity in children with spastic cerebral palsy (CP). Fifteen patients with spastic CP were recruited through a retrospective chart review to clarify what treatment they received. All patients received a BTA injection on gastrocnemius muscle (GCM), and patients in group 1 underwent one ESWT session for the GCM immediately after BTA injection and two consecutive ESWT sessions at weekly intervals. Ankle plantar flexor and the passive range of motion (PROM) of ankle dorsiflexion were measured by a modified Ashworth scale (MAS) before treatment and at 1 and 3 month(s) post-treatment. In group 1, the shear wave velocity (SWV) of GCM was measured. The PROM and MAS in group 1 and 2 before treatment significantly improved at 1 and 3 month(s) after treatment. The change in PROM was significantly different between the two groups at 1 and 3 month(s) after treatment. The SWV before treatment significantly decreased at 1 month and 3 months after treatment in group 1. Our study has shown that the combination of BTA injection and ESWT would be effective at controlling spasticity in children with spastic CP, with sustained improvement at 3 months after treatment.


2021 ◽  
Vol 10 (20) ◽  
pp. 4723
Author(s):  
En Yang ◽  
Henry L. Lew ◽  
Levent Özçakar ◽  
Chueh-Hung Wu

Spasticity is a common sequala of the upper motor neuron lesions. For instance, it often occurs in the first 4 weeks after stroke and is seen in more than one-third of stroke survivors after 12 months. In recent years, extracorporeal shock wave therapy (ESWT) has been recognized as a safe and effective method for reducing muscle spasticity. Possible/relevant mechanisms include nitric oxide production, motor neuron excitability reduction, induction of neuromuscular transmission dysfunction, and direct effects on rheological properties. There are two types of ESWT, focused and radial, with the radial type more commonly applied for treating muscle spasticity. Concerning the optimal location for applying ESWT, the belly muscles and myotendinous junction seem to produce comparable results. The effects of ESWT on spasticity are known to last at least four to six weeks, while some studies report durations of up to 12 weeks. In this review, the authors will focus on the current evidence regarding the effectiveness of ESWT in spasticity, as well as certain technical parameters of ESWT, e.g., the intensity, frequency, location, and number of sessions. The pertinent literature has been reviewed, with an emphasis on post-stroke upper limbs, post-stroke lower limbs, cerebral palsy, and multiple sclerosis. In short, while ESWT has positive effects on parameters such as the modified Ashworth scale, mixed results have been reported regarding functional recovery. Of note, as botulinum toxin injection is one of the most popular and effective pharmacological methods for treating spasticity, studies comparing the effects of ESWT and botulinum toxin injections, and studies reporting the results of their combination, are also reviewed in this paper.


Sign in / Sign up

Export Citation Format

Share Document