Methodological approach to a safety analysis of radioactive waste disposal in rock salt: An example

2015 ◽  
Vol 84 ◽  
pp. 79-88 ◽  
Author(s):  
G. Bracke ◽  
K. Fischer-Appelt
2007 ◽  
Vol 384 (1-3) ◽  
pp. 36-47 ◽  
Author(s):  
A. Agüero ◽  
P. Pinedo ◽  
D. Cancio ◽  
I. Simón ◽  
M. Moraleda ◽  
...  

2020 ◽  
Vol 54 ◽  
pp. 157-163
Author(s):  
Axel Liebscher ◽  
Christoph Borkel ◽  
Michael Jendras ◽  
Ute Maurer-Rurack ◽  
Carsten Rücker

Abstract. The Federal Office for the Safety of Nuclear Waste Management (BASE – Bundesamt für die Sicherheit der nuklearen Entsorgung) is the German federal regulatory authority for radioactive waste disposal. It supervises the German site selection process and is responsible for the accompanying public participation. Task related research is an integral part of BASE's activities. The projects MessEr and übErStand compiled the state-of-the-art science and technology regarding surface based exploration methods suitable for addressing the criteria and requirements specified in the German Site Selection Act. The results support BASE to review and define the surface-based exploration programs to be executed by the national implementer BGE (Bundesgesellschaft für Endlagerung mbH). To support BASE in reviewing the application of the exclusion criteria “active fault zones” according to the Site Selection Act, the project KaStör reviewed the current knowledge on active faults and fault zones in Germany and recommends methodological approaches to date and identify the activity of faulting. For the time being, the Site Selection Act defines 100 ∘C as a draft limit on the temperature at the outer surface of a repository container for all host rocks. The project Grenztemperatur studied the temperature dependency of the different thermal-hydraulic-mechanical-chemical/biological (THMC/B) processes according to available features-events-processes (FEP) catalogues for rock salt, clay stone, and crystalline rock and describes ways to defining host rock specific maximum temperatures based on specific disposal and safety concepts. Safety oriented weighting of different criteria and comparison of different potential regions and sites are key challenges during the siting process. The project MABeSt studied and reviewed methodological approaches to this weighting and comparison problem with special emphasis on multi criteria analysis (MCA) and multi criteria decision analysis (MCDA). A key requirement for safe geological disposal of nuclear waste is barrier integrity. The project PeTroS performed the first triaxial flow-through experiments on natural rock salt samples at disposal relevant p−T conditions and studied potential percolation mechanisms of fluids within rock salt. The data substantiate that the minimum stress criterion and/or the dilatancy criterion are the prime “percolation thresholds” in rock salt. The research results support BASE in fulfilling its tasks as national regulator according to state-of-the-art science and technology and are also relevant to other stakeholders of the siting process.


2021 ◽  
Vol 1 ◽  
pp. 63-64
Author(s):  
Lisa Richter ◽  
Thies Beilecke ◽  
Raphael Dlugosch ◽  
Tilo Kneuker ◽  
Lukas Pollok ◽  
...  

Abstract. The site selection procedure for a high-level radioactive waste repository in Germany is based on the Repository Site Selection Act (StandAG, 2017), which comprises three phases. In phase 2 the Federal Company for Radioactive Waste Disposal (BGE) will conduct surface exploration. Based on the exploratory findings, the further developed preliminary safety analyses, the common requirements and criteria, and potential socioeconomic analyses will be applied feeding into proposed sites for underground exploration. Commissioned by the BGE, the Federal Institute for Geosciences and Natural Resources (BGR) contributes to this procedure with the projects GeoMePS and ZuBeMErk, which collate and assess geoscientific and geophysical methods and programs for surface exploration. Their common goal is to develop recommendations for surface exploration of siting regions. For this purpose, the BGR has developed a systematic approach that includes (1) deducing exploration targets, (2) compilation of geoscientific and geophysical exploration methods in a database structure, and (3) analysis of case studies of national and international exploration programs for high-level radioactive waste disposal. Exploration targets are based on the common criteria and requirements as defined by the StandAG. The identified exploration targets (Kneuker et al., 2020) together with a large number of geoscientific and geophysical exploration methods were integrated and linked within the BGR database “GeM-DB”. All methods were evaluated according to their suitability and applicability for (a) the three defined host rocks (crystalline rock, claystone, rock salt) and (b) the previously defined exploration targets. In step (3) the BGR reviews national and international waste disposal programs exploring for crystalline rock, claystone, and rock salt. Here, the focus is on nondestructive and minimally invasive surface exploration techniques, such as geophysical airborne and ground-based methods or investigations in drill holes and on drill cores. The aims are to identify gaps in the method catalogue of the GeM-DB and to infer exploration directives for surface exploration during phase 2. An example is the analysis of the Swedish site selection process, especially the site investigation program. There, the site investigations are, e.g. the basis for the discipline-specific site descriptive models, which were applied for design and safety assessments (SKB, 2001). The Swedish site investigation program along with programs of other countries considering crystalline host rocks, such as Finland and Canada, show a common ground, which could be adapted for surface exploration of crystalline host rock regions in Germany. The assessment and evaluation of selected programs exploring for rock salt and claystone is currently in progress. The entire systematic approach of the projects GeoMePS and ZuBeMErk aims to develop recommendations for a nondestructive and minimally invasive surface exploration program of siting regions in Germany, regarding the lithological, structural, mechanical, and hydrogeological characterization of the different host rock formations.


Sign in / Sign up

Export Citation Format

Share Document