Topic 8: Hazardous and radioactive waste disposal In-situ verification of a drift seal system in rock salt—operating experience and preliminary results

2012 ◽  
pp. 415-426 ◽  
2021 ◽  
Vol 1 ◽  
pp. 137-139
Author(s):  
Kornelia Zemke ◽  
Kristoff Svensson ◽  
Ben Laurich ◽  
Johanna Lippmann-Pipke

Abstract. Repositories for high-level radioactive waste in geological formations require knowledge on thermal, mechanical and fluid transport properties of the whole repository system, including the engineered barriers and backfill materials. For about 30 years, crushed salt has been considered the most suitable geotechnical barrier material to backfill cavities and encapsulate radioactive waste in rock salt repository sites (e.g., Czaikowski et al., 2020). Over time, when the surrounding cavity walls converge by the creep of salt, it can become strongly compacted and safely encapsulates radioactive waste from any fluid flow. Hence, crushed salt has been characterized in detail for its physical material properties and its response to environmental controls (stress, temperature and moisture). This characterisation provides a basis for long-term numerical simulations (e.g., Liu et al., 2018), which verify so-called safety cases in radioactive waste disposal. Displacement-controlled oedometric compaction tests mimic the long-term in situ behaviour of crushed salt. The tests show that it can be compacted to a state comprising physical rock properties similar to natural rock salt. In general, compaction is easier with an increase in humidity and temperature (e.g., Stührenberg, 2007; Kröhn, et al., 2017). Triaxial test series address the compactions' response to differing confining pressures and help to identify generalized constitutive equations for crushed salt. Both BGR procedures, the oedometric and the triaxial compaction, are verified by the German accreditation body (DAkkS). Figure 1 illustrates the history of oedometric tests at the BGR laboratory since 1993, which examined crushed salt from various origins and differing temperature conditions. Most tests focused on material from the Asse mine, revealing the compactions' response to the materials' humidity and to brine flow. Moreover, systematic test series with synthetic grain size distributions and bentonite additives provided a basis for barrier material design. More recent tests on bedded salt formations (e.g., Teutschenthal and Sondershausen mines) allow the differentiation from characteristics from domal salt deposits (e.g. Gorleben). The current research continues the history of oedometric and triaxial tests, but has a new focus on late compaction stages with marginal remaining porosities (<5 %). The approach of systematic material characterization under best-controlled conditions essentially benefits from the international research collaboration in the KOMPASS project (Czaikowski et al., 2020). The aim of its current phase two is to synthetically generate, identify and quantify dominant grain-scale deformation processes in response to changes in environmental controls. Subsequently, these laboratory results will be embedded in numerical models on the long-term in situ rheology of crushed salt.


2020 ◽  
Vol 54 ◽  
pp. 157-163
Author(s):  
Axel Liebscher ◽  
Christoph Borkel ◽  
Michael Jendras ◽  
Ute Maurer-Rurack ◽  
Carsten Rücker

Abstract. The Federal Office for the Safety of Nuclear Waste Management (BASE – Bundesamt für die Sicherheit der nuklearen Entsorgung) is the German federal regulatory authority for radioactive waste disposal. It supervises the German site selection process and is responsible for the accompanying public participation. Task related research is an integral part of BASE's activities. The projects MessEr and übErStand compiled the state-of-the-art science and technology regarding surface based exploration methods suitable for addressing the criteria and requirements specified in the German Site Selection Act. The results support BASE to review and define the surface-based exploration programs to be executed by the national implementer BGE (Bundesgesellschaft für Endlagerung mbH). To support BASE in reviewing the application of the exclusion criteria “active fault zones” according to the Site Selection Act, the project KaStör reviewed the current knowledge on active faults and fault zones in Germany and recommends methodological approaches to date and identify the activity of faulting. For the time being, the Site Selection Act defines 100 ∘C as a draft limit on the temperature at the outer surface of a repository container for all host rocks. The project Grenztemperatur studied the temperature dependency of the different thermal-hydraulic-mechanical-chemical/biological (THMC/B) processes according to available features-events-processes (FEP) catalogues for rock salt, clay stone, and crystalline rock and describes ways to defining host rock specific maximum temperatures based on specific disposal and safety concepts. Safety oriented weighting of different criteria and comparison of different potential regions and sites are key challenges during the siting process. The project MABeSt studied and reviewed methodological approaches to this weighting and comparison problem with special emphasis on multi criteria analysis (MCA) and multi criteria decision analysis (MCDA). A key requirement for safe geological disposal of nuclear waste is barrier integrity. The project PeTroS performed the first triaxial flow-through experiments on natural rock salt samples at disposal relevant p−T conditions and studied potential percolation mechanisms of fluids within rock salt. The data substantiate that the minimum stress criterion and/or the dilatancy criterion are the prime “percolation thresholds” in rock salt. The research results support BASE in fulfilling its tasks as national regulator according to state-of-the-art science and technology and are also relevant to other stakeholders of the siting process.


Sign in / Sign up

Export Citation Format

Share Document