Dissolution behavior of solid stainless steel by its molten eutectic mixture with B4C under dynamic condition

2019 ◽  
Vol 117 ◽  
pp. 103094 ◽  
Author(s):  
Takehiro Sumita ◽  
Yoshinao Kobayashi
2002 ◽  
Vol 757 ◽  
Author(s):  
D. E. Janney

ABSTRACTArgonne National Laboratory has developed an electrometallurgical process for conditioning spent sodium-bonded metallic reactor fuel prior to disposal. A waste stream from this process consists of stainless steel cladding hulls that contain undissolved metal fission products such as Tc, Ru, Rh, Pd, and Ag; a small amount of undissolved actinides (U, Np, Pu) also remains with the hulls. These wastes will be immobilized in a waste form whose baseline composition is stainless steel alloyed with 15 wt% Zr (SS-15Zr). Scanning electron microscope (SEM) observations of simulated metal waste forms (SS-15Zr with up to 11 wt% actinides) show eutectic intergrowths of Fe-Zr-Cr-Ni intermetallic phases with steels. The actinide elements are almost entirely in the intermetallics, where they occur in concentrations ranging from 1–20 at%. Neutron- and electron-diffraction studies of the simulated waste forms show materials with structures similar to those of Fe2Zr and Fe23Zr6.Dissolution experiments on simulated waste forms show that normalized release rates of U, Np, and Pu differ from each other and from release rates of other elements in the sample, and that release rates for U exceed those for any other element (including Fe). This paper uses transmission electron microscope (TEM) observations and results from energy-dispersive X-ray spectroscopy (EDX) and selected-area electron-diffraction (SAED) to characterize relationships between structural and chemical data and understand possible reasons for the observed dissolution behavior.Transmission electron microscope observations of simulated waste form samples with compositions SS-15Zr-2Np, SS-15Zr-5U, SS-15Zr-11U-0.6Rh-0.3Tc-0.2Pd, and SS-15Zr-10Pu suggest that the major actinide-bearing phase in all of the samples has a structure similar to that of the C15 (cubic, MgCu2-type) polymorph of Fe2Zr, and that materials with this structure exhibit significant variability in chemical compositions. Material whose structure is similar to that of the C36 (dihexagonal, MgNi2-type) polymorph of Fe2Zr was also observed, and it exhibits less chemical variability than that displayed by material with the C15 structure. The TEM data also demonstrate a range of actinide concentrations in materials with the Fe23Zr6 (cubic, Mn23Th6-type) structure.Microstructures similar to those produced during experimental deformation of Fe-10 at% Zr alloys were observed in intermetallic materials in all of the simulated waste form samples. Stacking faults and associated dislocations are common in samples with U, but rarely observed in those with Np and Pu, while twins occurred in all samples. The observed differences in dissolution behavior between samples with different actinides may be related to increased defect-assisted dissolution in samples with U.


Metals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 876 ◽  
Author(s):  
Abolhasani ◽  
Seyedkashi ◽  
Kang ◽  
Kim ◽  
Woo ◽  
...  

The melt-pool behaviors during selective laser melting (SLM) of Al2O3-reinforced and a eutectic mixture of Al2O3-ZrO2-reinforced AISI 304 stainless-steel composites were numerically analyzed and experimentally validated. The thermal analysis results show that the geometry of the melt pool is significantly dependent on reinforcing particles, owing to the variations in the melting point and the thermal conductivity of the powder mixture. With the use of a eutectic mixture of Al2O3-ZrO2 instead of an Al2O3 reinforcing particle, the maximum temperature of the melt pool was increased. Meanwhile, a negligible corresponding relationship was observed between the cooling rate of both reinforcements. Therefore, it was identified that the liquid lifetime of the melt pool has the effect on the melting behavior, rather than the cooling rate, and the liquid lifetime increases with the eutectic ratio of Al2O3-ZrO2 reinforcement. The temperature gradient at the top surface reduces with the use of an Al2O3-ZrO2 reinforcement particle due to the wider melt pool. Inversely, the temperature gradient in the thickness direction increases with the use of an Al2O3-ZrO2 reinforcement particle. The results of melt-pool behaviors will provide a deep understanding of the effect of reinforcing particles on the dimensional accuracies and properties of fabricated AISI 304 stainless-steel composites.


2019 ◽  
Vol 25 (37) ◽  
pp. 17-22 ◽  
Author(s):  
So Aoki ◽  
Hiroshi Yakuwa ◽  
Katsuhiro Mitsuhashi ◽  
Jun'ichi Sakai

Author(s):  
Toshihide Takai ◽  
Tomohiro Furukawa ◽  
Hidemasa Yamano

Abstract In a core disruptive accident scenario, boron carbide, which is used as control rod material, may melt below the melting temperature of stainless steel due to the eutectic reaction with it. Produced eutectic mixture is assumed to relocate widely in the degraded core, and this behavior plays an important role to reduce the neutronic reactivity of the degraded core materials significantly. However, these behaviors have never been simulated in the severe accident computer codes, and reducing the uncertainty is important for reasonable assessment. To contribute improvement of the core disruptive accident analysis code to handle these eutectic melting and relocation behavior, authors had been carried out the evaluation of the thermophysical properties of stainless steel containing boron carbide, which needed as a basic data for cord improvement. Since the solubility range of boron against iron is expected to be wide, the crystalline phase of eutectic mixture may change according to boron concentration in the eutectic mixture. And this may affect the thermophysical properties themselves. In this work, the density and specific heat of stainless steel containing 17 mass% boron carbide in a solid state are obtained and compared with these of stainless steel containing 0 and 5 mass% boron carbide. By adding 17 mass boron carbide to stainless steel type 316L, the density decreased approximately 24% and the specific heat increased approximately 25% at 293 K. The density of stainless steel containing boron carbide tended to decrease almost linearly depending on the amount of boron carbide added, none the less for difference of crystalline phase. On the other hand, increasing trend of the specific heat of stainless steel containing 17 mass% boron carbide accompanying elevating temperature showed different behavior from that of stainless steel containing 0 and 5 mass% boron carbide. This difference in the trend of the specific heat was considered to be caused the difference in the crystalline phase.


Sign in / Sign up

Export Citation Format

Share Document