Experimental study on fine particle deposition in supercritical water natural circulation

2021 ◽  
Vol 141 ◽  
pp. 103981
Author(s):  
Zhou Tao ◽  
Ning Chen ◽  
Cheng Hu ◽  
Liangyu Zhu ◽  
Juan Chen
2021 ◽  
Author(s):  
Tian Qi ◽  
Tao Zhou ◽  
Ning Chen ◽  
Juan Chen

Abstract It is very important to study the deposition of particles in natural circulation of supercritical water to ensure the safe and stable operation of supercritical water reactor. The data of natural circulation loop calculated by ANSYS-CFX simulation software were analyzed by factorial analysis method, and the effects of axial distance, initial particle volume fraction, heating power and particle size on particle deposition were obtained. The results show that the contribution rate of particle size to the deposition rate is the largest, about 36.3%, and the contribution rate of initial particle concentration to the deposition rate is about 15.1%; the interaction between axial distance and heating power is the most obvious, and the interaction effect is the pipe temperature distribution. Through correspondence analysis, the main influencing factors of particle deposition rate at each level were analyzed. The results show that: when the deposition rate is small, the small change of axial distance will also have a greater impact on the deposition of particles; when the deposition rate is further increased, the change of initial particle volume fraction will significantly affect the deposition of particles; when the deposition rate is large, the particle size plays a leading role in the deposition of particles. Both of the two analysis methods show that: in the influence on the deposition of particles in supercritical water natural circulation, the influence degree is particle size > concentration > axial distance > heating power. Based on the two analysis methods, an analysis regression model is established and the volume proportion of particles in natural circulation is predicted.


Energies ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2315
Author(s):  
Liangyu Zhu ◽  
Tao Zhou ◽  
Xijia Ding ◽  
Xuemeng Qin ◽  
Jialei Zhang

The movement and deposition of particles that occur during their natural circulation in supercritical water exercise an important impact on the safe and stable operation of a supercritical water reactor (SCWR). When supercritical water flows in pipelines, a large number of corrosive particles may be generated due to pipeline corrosion or the purity of the fluid itself. The presence of particulate matter affects the heat transfer efficiency of the pipeline, increasing flow resistance and easily promoting heat transfer deterioration. ANSYS-CFX numerical analysis software was used to simulate the natural circulation loop of supercritical water, and micron particles were added in the initial flow field. The effects of heating power, particle concentration and particle diameter on particle deposition were obtained. Through this analysis, it can be concluded that the heating of the pipeline has a certain inhibitory effect on the deposition of particles. The rise in both initial particle concentration and particle diameter serve to reinforce the deposition of particles in the heating section. Depending on the degree of influence, the contributory parameters to particle deposition include particle diameter, particle concentration and heating power in turn.


2006 ◽  
Vol 18 (4) ◽  
pp. 335-358 ◽  
Author(s):  
M. Ishii ◽  
Selim Kuran ◽  
X. Sun ◽  
Ling Cheng ◽  
Yiban Xu ◽  
...  

Kerntechnik ◽  
2017 ◽  
Vol 82 (6) ◽  
pp. 631-636
Author(s):  
Li Zi-chao ◽  
Qi Shi ◽  
Zhou Tao ◽  
Li Bing ◽  
Muhammad Ali Shahzad ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document