Global observations of submesoscale coherent vortices in the ocean

2020 ◽  
Vol 189 ◽  
pp. 102452
Author(s):  
Daniel McCoy ◽  
Daniele Bianchi ◽  
Andrew L. Stewart
Keyword(s):  
Nature ◽  
2005 ◽  
Vol 437 (7056) ◽  
pp. 290-290
Author(s):  
David Sundkvist ◽  
Vladimir Krasnoselskikh ◽  
Padma K. Shukla ◽  
Andris Vaivads ◽  
Mats André ◽  
...  
Keyword(s):  

2013 ◽  
Vol 732 ◽  
Author(s):  
Rick Salmon

AbstractOrdinary two-dimensional turbulence corresponds to a Hamiltonian dynamics that conserves energy and the vorticity on fluid particles. This paper considers coupled systems of two-dimensional turbulence with three distinct governing dynamics. One is a Hamiltonian dynamics that conserves the vorticity on fluid particles and a quantity analogous to the energy that causes the system members to develop a strong correlation in velocity. The other two dynamics considered are non-Hamiltonian. One conserves the vorticity on particles but has no conservation law analogous to energy conservation; the other conserves energy and enstrophy but it does not conserve the vorticity on fluid particles. The coupled Hamiltonian system behaves like two-dimensional turbulence, even to the extent of forming isolated coherent vortices. The other two dynamics behave very differently, but the behaviours of all four dynamics are accurately predicted by the methods of equilibrium statistical mechanics.


2021 ◽  
Author(s):  
Wenhao Fan ◽  
Haibin Song ◽  
Kun Zhang ◽  
Yi Gong ◽  
Shun Yang ◽  
...  

<p>In this study, when using reflection seismic data to study the wakes of the Batan Islands, a method for estimating the fluid dynamics parameters such as the relative vorticity (relative Rossby number) and the relative potential vorticity is proposed. Although the relative Rossby number estimation method proposed in this study cannot guarantee absolute accuracy in the calculation value, this method is more accurate in describing the positive and negative vorticity distribution for the wakes, and the resolution of the positive and negative vorticity distribution described by this method is higher than the result of the reanalysis data. For the wakes developed in the Batan Islands, the reflection events in the wake development area have the larger inclination than the reflection events in the western Pacific water distribution area. It is also found that the negative vorticity wakes are mainly distributed on the west side of the island/ridge, and the positive vorticity wakes are mainly distributed on the east side of the island/ridge. This is consistent with the understanding of previous wakes simulations. The strong vorticity values in the study area are mainly distributed at depths above 300m, and the maximum impact depth of wakes can reach 600m. At the downstream position of the wake on the survey line 7, it can be seen that the bottom boundary layer has separated, and there is the negative vorticity wakes on the west side intruding into the positive vorticity wakes on the east side , which is presumed to be caused by the disturbance of the small anticyclone existing near the Batan Islands. For the survey line 7, the negative potential vorticity is mainly distributed on the west side of the island/ridge, and the influence range can reach the sea depth of 600m. In the negative potential vorticity region, there is strong energy dissipation and vertical shear. In this study, we don’t find the existence of submesoscale coherent vortices on the survey line 7, but find the reflection structure similar to filaments on the seismic section. Combined with the analysis of the balanced Richardson number angle of survey line 7, we speculate that the wake in the negative potential vorticity distribution area has the characteristics of symmetrical instability, and the symmetrical instability may destroy the process of filaments forming submesoscale coherent vortices.</p>


2008 ◽  
Vol 336 (4) ◽  
pp. 363-369 ◽  
Author(s):  
Christophe Brun ◽  
Thomas Goossens

2018 ◽  
Vol 850 ◽  
Author(s):  
James C. McWilliams ◽  
Cigdem Akan ◽  
Yusuke Uchiyama

Coherent vortices with horizontal swirl arise spontaneously in the wave-driven nearshore surf zone. Here, a demonstration is made of the much greater robustness of coherent barotropic dipole vortices on a sloping beach in a 2D shallow-water model compared with fully 3D models either without or with stable density stratification. The explanation is that active vortex tilting and stretching or instability in 3D disrupt an initially barotropic dipole vortex. Without stratification in 3D, the vorticity retains a dipole envelope structure but is internally fragmented. With stratification in 3D, the disrupted vortex reforms as a coherent but weaker surface-intensified baroclinic dipole vortex. An implication is that barotropic or depth-integrated dynamical models of the wave-driven surf zone misrepresent an important aspect of surf-eddy behaviour.


Fluids ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 14 ◽  
Author(s):  
Konstantin Koshel ◽  
Eugene Ryzhov ◽  
Xavier Carton

Deformation flows are the flows incorporating shear, strain and rotational components. These flows are ubiquitous in the geophysical flows, such as the ocean and atmosphere. They appear near almost any salience, such as isolated coherent structures (vortices and jets) and various fixed obstacles (submerged obstacles and continental boundaries). Fluid structures subject to such deformation flows may exhibit drastic changes in motion. In this review paper, we focus on the motion of a small number of coherent vortices embedded in deformation flows. Problems involving isolated one and two vortices are addressed. When considering a single-vortex problem, the main focus is on the evolution of the vortex boundary and its influence on the passive scalar motion. Two vortex problems are addressed with the use of point vortex models, and the resulting stirring patterns of neighbouring scalars are studied by a combination of numerical and analytical methods from the dynamical system theory. Many dynamical effects are reviewed with emphasis on the emergence of chaotic motion of the vortex phase trajectories and the scalars in their immediate vicinity.


Sign in / Sign up

Export Citation Format

Share Document