Tetrabromocatecholato Mn(III) complexes of bis(phenol) diamine ligands as models for enzyme–substrate adducts of catechol dioxygenases

Polyhedron ◽  
2016 ◽  
Vol 118 ◽  
pp. 171-179 ◽  
Author(s):  
Elham Safaei ◽  
Leila Hajikhanmirzaei ◽  
Saman Alavi ◽  
Yong-Ill Lee ◽  
Andrzej Wojtczak ◽  
...  
Polyhedron ◽  
2020 ◽  
Vol 187 ◽  
pp. 114620
Author(s):  
Yalda Sheybani Pour ◽  
Elham Safaei ◽  
Andrzej Wojtczak ◽  
Zvonko Jagličić

2013 ◽  
Vol 395 ◽  
pp. 124-134 ◽  
Author(s):  
Touraj Karimpour ◽  
Elham Safaei ◽  
Andrzej Wojtczak ◽  
Zvonko Jagličić ◽  
Anna Kozakiewicz

2018 ◽  
Author(s):  
Todd D. Gruber ◽  
Chithra Krishnamurthy ◽  
Jonathan B. Grimm ◽  
Michael R. Tadross ◽  
Laura M. Wysocki ◽  
...  

<p>The utility of<b> </b>small molecules to probe or perturb biological systems is limited by the lack of cell-specificity. ‘Masking’ the activity of small molecules using a general chemical modification and ‘unmasking’ it only within target cells could overcome this limitation. To this end, we have developed a selective enzyme–substrate pair consisting of engineered variants of <i>E. coli</i> nitroreductase (NTR) and a 2‑nitro-<i>N</i>-methylimidazolyl (NM) masking group. To discover and optimize this NTR–NM system, we synthesized a series of fluorogenic substrates containing different nitroaromatic masking groups, confirmed their stability in cells, and identified the best substrate for NTR. We then engineered the enzyme for improved activity in mammalian cells, ultimately yielding an enzyme variant (enhanced NTR, or eNTR) that possesses up to 100-fold increased activity over wild-type NTR. These improved NTR enzymes combined with the optimal NM masking group enable rapid, selective unmasking of dyes, indicators, and drugs to genetically defined populations of cells.</p>


1980 ◽  
Vol 45 (2) ◽  
pp. 427-434 ◽  
Author(s):  
Kveta Heinrichová ◽  
Rudolf Kohn

The effect of exo-D-galacturonanase from carrot on O-acetyl derivatives of pectic acid of variousacetylation degree was studied. Substitution of hydroxyl groups at C(2) and C(3) of D-galactopyranuronic acid units influences the initial rate of degradation, degree of degradation and its maximum rate, the differences being found also in the time of limit degradations of the individual O-acetyl derivatives. Value of the apparent Michaelis constant increases with increase of substitution and value of Vmax changes. O-Acetyl derivatives act as a competitive inhibitor of degradation of D-galacturonan. The extent of the inhibition effect depends on the degree of substitution. The only product of enzymic reaction is D-galactopyranuronic acid, what indicates that no degradation of the terminal substituted unit of O-acetyl derivative of pectic acid takes place. Substitution of hydroxyl groups influences the affinity of the enzyme towards the modified substrate. The results let us presume that hydroxyl groups at C(2) and C(3) of galacturonic unit of pectic acid are essential for formation of the enzyme-substrate complex.


1982 ◽  
Vol 47 (11) ◽  
pp. 3013-3018
Author(s):  
František Kaštánek ◽  
Jindřich Zahradník ◽  
Germanico Ocampo

Calculation procedure is suggested for flow intensity of substrate toward reaction interface of immobilized enzyme at simultaneous effect of enzymatic reaction and internal diffusion. The approximate model is presented in an analytical form for the basic type of Michaelis-Menten kinetics and for the case of inhibition in excess of substrate.


2019 ◽  
Vol 43 (24) ◽  
pp. 9458-9465
Author(s):  
Xiquan Yue ◽  
Lihong Su ◽  
Xu Chen ◽  
Junfeng Liu ◽  
Longpo Zheng ◽  
...  

The strategy is based on small molecule-mediated hybridization chain reaction.


2021 ◽  
Vol 14 ◽  
pp. 117863612110246
Author(s):  
Cheuk Yin Lai ◽  
Ka Lun Ng ◽  
Hao Wang ◽  
Chui Chi Lam ◽  
Wan Keung Raymond Wong

CenA is an endoglucanase secreted by the Gram-positive cellulolytic bacterium, Cellulomonas fimi, to the environment as a glycosylated protein. The role of glycosylation in CenA is unclear. However, it seems not crucial for functional activity and secretion since the unglycosylated counterpart, recombinant CenA (rCenA), is both bioactive and secretable in Escherichia coli. Using a systematic screening approach, we have demonstrated that rCenA is subjected to spontaneous cleavages (SC) in both the cytoplasm and culture medium of E. coli, under the influence of different environmental factors. The cleavages were found to occur in both the cellulose-binding (CellBD) and catalytic domains, with a notably higher occurring rate detected in the former than the latter. In CellBD, the cleavages were shown to occur close to potential N-linked glycosylation sites, suggesting that these sites might serve as ‘attributive tags’ for differentiating rCenA from endogenous proteins and the points of initiation of SC. It is hypothesized that glycosylation plays a crucial role in protecting CenA from SC when interacting with cellulose in the environment. Subsequent to hydrolysis, SC would ensure the dissociation of CenA from the enzyme-substrate complex. Thus, our findings may help elucidate the mechanisms of protein turnover and enzymatic cellulolysis.


Sign in / Sign up

Export Citation Format

Share Document