The effects of cauliflower-like short carbon fibers on the mechanical properties of rigid polyurethane matrix composites

2020 ◽  
Vol 89 ◽  
pp. 106718
Author(s):  
Momo Huang ◽  
Weiwei Li ◽  
Xiaojing Liu ◽  
Ming Feng ◽  
Jie Yang
2020 ◽  
Vol 9 (6) ◽  
pp. 716-725
Author(s):  
Guangqi He ◽  
Rongxiu Guo ◽  
Meishuan Li ◽  
Yang Yang ◽  
Linshan Wang ◽  
...  

AbstractShort-carbon-fibers (Csf) reinforced Ti3SiC2 matrix composites (Csf/Ti3SiC2, the Csf content was 0 vol%, 2 vol%, 5 vol%, and 10 vol%) were fabricated by spark plasma sintering (SPS) using Ti3SiC2 powders and Csf as starting materials at 1300 °C. The effects of Csf addition on the phase compositions, microstructures, and mechanical properties (including hardness, flexural strength (σf), and KIC) of Csf/Ti3SiC2 composites were investigated. The Csf, with bi-layered transition layers, i.e., TiC and SiC layers, were homogeneously distributed in the as-prepared Csf/Ti3SiC2 composites. With the increase of Csf content, the KIC of Csf/Ti3SiC2 composites increased, but the σf decreased, and the Vickers hardness decreased initially and then increased steadily when the Csf content was higher than 2 vol%. These changed performances (hardness, σf, and KIC) could be attributed to the introduction of Csf and the formation of stronger interfacial phases.


2020 ◽  
Author(s):  
Guangqi He ◽  
Rongxiu Guo ◽  
Meishuan Li ◽  
Yang Yang ◽  
Linshan Wang ◽  
...  

Abstract In this paper, short-carbon-fibers (Csf) reinforced Ti3SiC2 matrix composites (Csf/Ti3SiC2, the Csf content was 0, 2, 5 and 10 vol.%) were fabricated by spark-plasma-sintering (SPS) using Ti3SiC2 powders and Csf as starting materials at 1300 oC. The effects of Csf addition on the phase compositions, microstructures and mechanical properties (including hardness, flexural strength and fracture toughness) of Csf/Ti3SiC2 composites were investigated. The Csf, with a bi-layered transition layers, i.e. TiC and SiC layer, were homogeneously distributed in the as-prepared Csf/Ti3SiC2 composites. With the increase of Csf content, the fracture toughness of Csf/Ti3SiC2 composites increased, but the flexural strength decreased, while the Vickers hardness decreased initially then increased steadily when the Csf content was higher than 2 vol.%. These changed performances could be attributed to the introduction of Csf and the formation of much stronger interfacial phases.


2011 ◽  
Vol 474-476 ◽  
pp. 1605-1610 ◽  
Author(s):  
Lian Wei Yang ◽  
Yun Dong ◽  
Rui Jie Wang

The mechanical properties and wear behavior of short carbon fiber reinforced copper matrix composites was studied. In order to avoid any interfacial pronlems in the carbon fibre reinforced composites, the carbon fibers were coated with copper. The fibers were coated by electroless coating method and then characterized. Composites containing different amounts of carbon fibers were prepared by hot pressing technique. The results show that Carbon fiber/Cu–Ni–Fe composites showed higher hardness, higher wear resistance and bending strength than the common copper alloy when carbon fibers content is less than 15 vol.%. The predominant wear mechanisms were identified as adhesive wear in the alloy and adhesive wear accompanied with oxidative wear in the 12 vol.% carbon fiber/Cu–Ni–Fe composites.


2020 ◽  
Author(s):  
Guangqi He ◽  
Rongxiu Guo ◽  
Meishuan Li ◽  
Yang Yang ◽  
Linshan Wang ◽  
...  

Abstract In this paper, short-carbon-fibers (Csf) reinforced Ti3SiC2 matrix composites (Csf/Ti3SiC2 , the Csf content was 0, 2, 5 and 10 vol.%) were fabricated by spark-plasma-sintering (SPS) using Ti3SiC2 powders and Csf as starting materials at 1300 ℃. The effects of Csf addition on the phase compositions, microstructures and mechanical properties (including hardness, flexural strength and fracture toughness) of Csf/Ti3SiC2 composites were investigated. The Csf, with a bi-layered transition layers, i.e. TiC and SiC layer, were homogeneously distributed in the as-prepared Csf /Ti3SiC2 composites. With the increase of Csf content, the fracture toughness of Csf/Ti3SiC2 composites increased, but the flexural strength decreased, while the Vickers hardness decreased initially then increased steadily when the Csf content was higher than 2 vol.%. These changed performances could be attributed to the introduction of Csf and the formation of much stronger interfacial phases.


2020 ◽  
Author(s):  
Guangqi He ◽  
Rongxiu Guo ◽  
Meishuan Li ◽  
Yang Yang ◽  
Linshan Wang ◽  
...  

Abstract In this paper, short-carbon-fibers (Csf) reinforced Ti3SiC2 matrix composites (Csf/Ti3SiC2, the Csf content was 0, 2, 5 and 10 vol.%) were fabricated by spark-plasma-sintering (SPS) using Ti3SiC2 powders and Csf as starting materials at 1300 oC. The effects of Csf addition on the phase compositions, microstructures and mechanical properties (including hardness, flexural strength and fracture toughness) of Csf/Ti3SiC2 composites were investigated. The Csf, with a bi-layered transition layers, i.e. TiC and SiC layer, were homogeneously distributed in the as-prepared Csf/Ti3SiC2 composites. With the increase of Csf content, the fracture toughness of Csf/Ti3SiC2 composites increased, but the flexural strength decreased, while the Vickers hardness decreased initially then increased steadily when the Csf content was higher than 2 vol.%. These changed performances could be attributed to the introduction of Csf and the formation of much stronger interfacial phases.


2018 ◽  
Vol 225 ◽  
pp. 01022
Author(s):  
Falak O. Abasi ◽  
Raghad U. Aabass

Newer manufacturing techniques were invented and introduced during the last few decades; some of them were increasingly popular due to their enhanced advantages and ease of manufacturing over the conventional processes. Polymer composite material such as glass, carbon and Kevlar fiber reinforced composite are popular in high performance and light weight applications such as aerospace and automobile fields. This research has been done by reinforcing the matrix (epoxy) resin with two kinds of the reinforcement fibers. One weight fractions were used (20%) wt., Epoxy reinforced with chopped carbon fiber and second reinforcement was epoxy reinforced with hybrid reinforcements Kevlar fiber and improved one was the three laminates Kevlar fiber and chopped carbon fibers reinforced epoxy resin. After preparation of composite materials some of the mechanical properties have been studied. Four different fiber loading, i.e., 0 wt. %, 20wt. % CCF, 20wt. % SKF, AND 20wt. %CCF + 20wt. % SKF were taken for evaluating the above said properties. The thermal and mechanical properties, i.e., hardness load, impact strength, flexural strength (bending load), and thermal conductivity are determined to represent the behaviour of composite structures with that of fibers loading. The results show that with the increase in fiber loading the mechanical properties of carbon fiber reinforced epoxy composites increases as compared to short carbon fiber reinforced epoxy composites except in case of hardness, short carbon fiber reinforced composites shows better results. Similarly, flexural strength test, Impact test, and Brinell hardness test the results show the flexural strength, impact strength of the hybrid composites values were increased with existence of Kevlar fibers, while the hardness was decrease. But the reinforcement with carbon fibers increases the hardness and decreases other tests.


2016 ◽  
Vol 20 ◽  
pp. 39-46 ◽  
Author(s):  
Hyun-Il Kim ◽  
Woong Han ◽  
Woong-Ki Choi ◽  
Soo-Jin Park ◽  
Kay-Hyeok An ◽  
...  

2018 ◽  
Vol 44 (16) ◽  
pp. 19345-19351 ◽  
Author(s):  
Jiangang Jia ◽  
Diqiang Liu ◽  
Changqi Gao ◽  
Genshun Ji ◽  
Tieming Guo

Sign in / Sign up

Export Citation Format

Share Document