Waterborne polyurethanes from castor oil-based polyols for next generation of environmentally-friendly hair-styling agents

2020 ◽  
Vol 142 ◽  
pp. 105588 ◽  
Author(s):  
Yi Zhang ◽  
Wenbo Zhang ◽  
Xiao Wang ◽  
Qianwen Dong ◽  
Xueyi Zeng ◽  
...  
2019 ◽  
Vol 54 (1) ◽  
pp. 101-110 ◽  
Author(s):  
Abbas Madhi ◽  
Behzad S Hadavand

Attention to environmental problems and the importance of maintaining it have caused the researchers to pay more attention in this regard. The production of polymers and resins has increased in recent years and has affected by environmental pollution due to their long-term degradation. An appropriate solution to this problem is the synthesis of degradable and environmentally friendly polymers and resins. Using natural materials in the synthesis of polymers and resins can help them to be environmentally friendly. The purpose of this research is to synthesize urethane acrylate resins using natural resources. For this purpose, the urethane acrylate pre-polymer was synthesized with castor oil. Then, using modified zinc oxide nanoparticles with 1, 3 and 5 wt% urethane acrylate zinc oxide nanocomposites were produced. The use of castor oil as a degradable part and lack of organic solvent in radiation systems led to the creation of an environmentally friendly resin. Subsequently, the viscoelastic behavior of the prepared nanocomposite was evaluated. Spectrometry results confirm the synthesized resin structure. The morphology of nanocomposites confirmed the proper particle size distribution in a 3 wt.% sample. The results of the dynamic mechanical thermal analysis test showed that increasing the amount of modified nano ZnO could increase the glass transition temperature, and the maximum value was observed in 5 wt.% modified nano ZnO (69.7℃).


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Xiangbo Song ◽  
Xu Ji ◽  
Ming Li ◽  
Weidong Lin ◽  
Xi Luo ◽  
...  

Cu2ZnSnS4is considered as the ideal absorption layer material in next generation thin film solar cells due to the abundant component elements in the crust being nontoxic and environmentally friendly. This paper summerized the development situation of Cu2ZnSnS4thin film solar cells and the manufacturing technologies, as well as problems in the manufacturing process. The difficulties for the raw material’s preparation, the manufacturing process, and the manufacturing equipment were illustrated and discussed. At last, the development prospect of Cu2ZnSnS4thin film solar cells was commented.


RSC Advances ◽  
2015 ◽  
Vol 5 (15) ◽  
pp. 11524-11533 ◽  
Author(s):  
T. Gurunathan ◽  
Smita Mohanty ◽  
Sanjay K. Nayak

The environmentally friendly vegetable oil-based waterborne polyurethane–organoclay nanocomposites have been successfully synthesized from castor oil polyols, isophorone diisocyanate and dimethylolpropionic acid.


2014 ◽  
Vol 955-959 ◽  
pp. 88-91 ◽  
Author(s):  
Zhe Yang ◽  
Yan Bin Zhu ◽  
Fang Peng ◽  
Chang Qing Fu

The undecylenate based diol (UAD) has been synthesized from undecylenate by esterification and thiol-ene click reaction sequently, and then it was used as a diol to prepare bio-based waterborne polyurethane (WPU) reacting with isophorone diisocyanate (IPDI) and castor oil-based carboxyl hydrophilic chain extender. The structure of undecylenate based diol was verified by hydrogen proton nuclear magnetic resonance (1H NMR). Fourier transform infrared spectroscopy (FT-IR) was used to characterize the structure of WPU film. Furthermore, particle size and viscosity were used to character apparent properties of the bio-based waterborne polyurethane dispersion. The result shows that: bio-based waterborne polyurethane dispersion is transparent and very stable under room temperature. This work provides a simple and efficient method for the preparation of fatty acids based polyols and bio-based waterborne polyurethanes.


RSC Advances ◽  
2016 ◽  
Vol 6 (38) ◽  
pp. 31698-31704 ◽  
Author(s):  
Kai Liu ◽  
Zhiguo Su ◽  
Shida Miao ◽  
Guanghui Ma ◽  
Songping Zhang

A simple, green, robust and efficient method has been developed for the preparation of an anti-biofouling coating by directly mixing antifouling enzymes with a castor oil-based waterborne polyurethane (WPU) dispersion.


Sign in / Sign up

Export Citation Format

Share Document