Effects of size, volume fraction, and orientation of metallic flake particles on infrared radiation characteristics of Al/acrylic resin composite coatings

2020 ◽  
Vol 145 ◽  
pp. 105680 ◽  
Author(s):  
Kuilong Song ◽  
Ming Xie ◽  
Qing Ai ◽  
Liu Yang ◽  
Haotuo Liu ◽  
...  
2010 ◽  
Vol 25 (3) ◽  
pp. 529-536 ◽  
Author(s):  
Yijun Wang ◽  
Isabel K. Lloyd

Nanoindentation and the viscous-elastic–plastic (VEP) model developed by Oyen and Cook for lightly filled thermoplastic polymer composites were used to characterize the elastic modulus, hardness, and viscoelastic response of a new high elastic modulus dental resin composite. The VEP model was used because loading rate studies indicated a viscous component in the loading/unloading response of our highly filled, thermosetting acrylic resin composites. Increasing the volume fraction of our high modulus filler increased the elastic modulus and hardness and decreased the viscous response in our composites. Coupling the filler and resin matrix with a commercial coupling agent like Metaltite or MPTMS (3-methacryloxypropyltrimethoxysilane) that ionically bonds to the filler and covalently bonds to the matrix decreases the viscous response and increases the hardness of the composite. The coupling agents did not affect the elastic modulus. The ability of the VEP model to predict load–displacement trajectories and the correlation of the elastic modulus and hardness values determined from the VEP model with those from the direct continuous stiffness measurement mode nanoindentation measurements indicate that the VEP model can be extended to highly filled, thermosetting systems. This is valuable since the potential to predict elastic, plastic, and viscous contributions to behavior should be valuable in the design and understanding of future highly filled resin composite systems.


2021 ◽  
Vol 12 (1) ◽  
pp. 1370-1384
Author(s):  
Yiju Tang ◽  
Jing Liu ◽  
Tianxuan Hao ◽  
Fan Li ◽  
Lizhen Zhao

Author(s):  
Kewang Cao ◽  
Liqiang Ma ◽  
Dongsheng Zhang ◽  
Xingping Lai ◽  
Zhitao Zhang ◽  
...  

2018 ◽  
Vol 98 (2) ◽  
pp. 194-199 ◽  
Author(s):  
S. Aponso ◽  
J.G. Ummadi ◽  
H. Davis ◽  
J. Ferracane ◽  
D. Koley

The chemical microenvironment surrounding dental composites plays a crucial role in controlling the bacteria grown on these specialized surfaces. In this study, we report a scanning electrochemical microscopy (SECM)–based analytic technique to design and optimize metal ion-releasing bioactive glass (BAG) composites, which showed a significant reduction in biofilm growth. SECM allows positioning of the probe without touching the substrate while mapping the chemical parameters in 3-dimensional space above the substrate. Using SECM and a solid-state H+ and Ca2+ ion-selective microprobe, we determined that the local Ca2+ concentration released by different composites was 10 to 224 µM for a BAG particle size of <5 to 150 µm in the presence of artificial saliva at pH 4.5. The local pH was constant above the composites in the same saliva solution. The released amount of Ca2+ was determined to be maximal for particles <38 µm and a BAG volume fraction of 0.32. This optimized BAG-resin composite also showed significant inhibition of biofilm growth (24 ± 5 µm) in comparison with resin-only composites (53 ± 6 µm) after Streptococcus mutans bacteria were grown for 3 d in a basal medium mucin solution. Biofilm morphology and its subsequent volume, as determined by the SECM imaging technique, was (0.59 ± 0.38) × 107 µm3 for BAG-resin composites and (1.29 ± 0.53) × 107 µm3 for resin-only composites. This study thus lays the foundation for a new analytic technique for designing dental composites that are based on the chemical microenvironment created by biomaterials to which bacteria have been exposed.


2015 ◽  
Vol 132 (32) ◽  
pp. n/a-n/a ◽  
Author(s):  
Xiaoxia Wang ◽  
Beili Pang ◽  
Qianqian Zhu ◽  
Jianhua Yu ◽  
Hongzhou Dong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document