Water-based polyurethane composite anticorrosive barrier coating via enhanced dispersion of functionalized graphene oxide in the presence of acidified multi-walled carbon nanotubes

2020 ◽  
Vol 146 ◽  
pp. 105734 ◽  
Author(s):  
Li-Chao Jing ◽  
Tao Wang ◽  
Wei-Wei Cao ◽  
Jian-Gong Wen ◽  
Hui Zhao ◽  
...  
2015 ◽  
Vol 7 (12) ◽  
pp. 5303-5310 ◽  
Author(s):  
Linlin Yang ◽  
Xi Li ◽  
Songling Yan ◽  
Mengmeng Wang ◽  
Peng Liu ◽  
...  

Illustration of the procedure for the preparation of a CFGO and SWCNTs-based electrochemical DNA biosensor.


2017 ◽  
Vol 5 (1) ◽  
pp. 220-228 ◽  
Author(s):  
Jinhui Li ◽  
Guoping Zhang ◽  
Rong Sun ◽  
Ching-Ping Wong

A novel composite of reduced functionalized graphene oxide/polyurethane based on Diels–Alder chemistry was developed which could be healed microwaves with high efficiency and applied in healable flexible electronics.


2013 ◽  
Vol 13 (12) ◽  
pp. 4749-4756 ◽  
Author(s):  
Xiaoyu Li ◽  
Xiangdong Chen ◽  
Yao Yao ◽  
Ning Li ◽  
Xinpeng Chen ◽  
...  

2021 ◽  
Vol 21 (7) ◽  
pp. 3711-3715
Author(s):  
Jeongdong Choi ◽  
Eun-Sik Kim

This study investigated experimental parameters to fabricate polymeric carbon nanocomposite hollow-fiber membranes with graphene oxide and multi-walled carbon nanotubes. This case was different from that of flat-sheet type membranes in that the characteristics of the hollow-fiber type membranes were affected by the structure of the spinneret, the flow rate of the injected polymer and draw solution, and the mixing ratio. The membranes were characterized in terms of mechanical strength, porosity, hydrophilicity, and permeate flux using different solutions. The results reveal a mechanical strength of the carbon nanocomposite hollow-fiber membranes that is about 47.8% higher than that of hollow-fiber membranes without carbon nanomaterials. The porosity and surface hydrophilicity changed to produce more applicable membranes for water and wastewater treatment. As for the permeate flux, the nanocomposite membrane with graphene oxide showed a higher flux compared to the multi-walled carbon nanotubes membrane, which could be influenced by structural effects of the carbon materials.


RSC Advances ◽  
2015 ◽  
Vol 5 (125) ◽  
pp. 103365-103372 ◽  
Author(s):  
Lei Liu ◽  
Dong Wang ◽  
Yuan Hu

Negative graphene oxide was combined with positive chitosan-modified multi-walled carbon nanotubes in aqueous solution and then thermally reduced to fabricate a multi-walled carbon nanotube/graphene (MWCNT/G) hybrid material.


Sign in / Sign up

Export Citation Format

Share Document