Self-assembly fabrication of a graphene/multi-walled carbon nanotube hybrid material for suppressing potential heat radiation and toxic effluent

RSC Advances ◽  
2015 ◽  
Vol 5 (125) ◽  
pp. 103365-103372 ◽  
Author(s):  
Lei Liu ◽  
Dong Wang ◽  
Yuan Hu

Negative graphene oxide was combined with positive chitosan-modified multi-walled carbon nanotubes in aqueous solution and then thermally reduced to fabricate a multi-walled carbon nanotube/graphene (MWCNT/G) hybrid material.

RSC Advances ◽  
2017 ◽  
Vol 7 (84) ◽  
pp. 53570-53577 ◽  
Author(s):  
Yanping Li ◽  
Ruixia Zhao ◽  
Lingyun Shi ◽  
Gaoyi Han ◽  
Yaoming Xiao

A sensitive electrochemical biosensor for determining organophosphates and carbamate pesticides has been achieved by immobilizing acetylcholinesterase on electrochemically inducing 3D graphene oxide network/multi-walled carbon nanotubes composites.


2019 ◽  
Vol 30 (8) ◽  
pp. 1216-1224 ◽  
Author(s):  
Mohammad Charara ◽  
Mohammad Abshirini ◽  
Mrinal C Saha ◽  
M Cengiz Altan ◽  
Yingtao Liu

This article presents three-dimensional printed and highly sensitive polydimethylsiloxane/multi-walled carbon nanotube sensors for compressive strain and pressure measurements. An electrically conductive polydimethylsiloxane/multi-walled carbon nanotube nanocomposite is developed to three-dimensional print compression sensors in a freestanding and layer-by-layer manner. The dispersion of multi-walled carbon nanotubes in polydimethylsiloxane allows the uncured nanocomposite to stand freely without any support throughout the printing process. The cross section of the compression sensors is examined under scanning electron microscope to identify the microstructure of nanocomposites, revealing good dispersion of multi-walled carbon nanotubes within the polydimethylsiloxane matrix. The sensor’s sensitivity was characterized under cyclic compression loading at various max strains, showing an especially high sensitivity at lower strains. The sensing capability of the three-dimensional printed nanocomposites shows minimum variation at various applied strain rates, indicating its versatile potential in a wide range of applications. Cyclic tests under compressive loading for over 8 h demonstrate that the long-term sensing performance is consistent. Finally, in situ micromechanical compressive tests under scanning electron microscope validated the sensor’s piezoresistive mechanism, showing the rearrangement, reorientation, and bending of the multi-walled carbon nanotubes under compressive loads, were the main reasons that lead to the piezoresistive sensing capabilities in the three-dimensional printed nanocomposites.


2016 ◽  
Vol 4 (21) ◽  
pp. 3823-3831 ◽  
Author(s):  
Stefano Fedeli ◽  
Alberto Brandi ◽  
Lorenzo Venturini ◽  
Paola Chiarugi ◽  
Elisa Giannoni ◽  
...  

An efficient drug delivery system through a straightforward approach to multi-walled carbon nanotube decoration.


RSC Advances ◽  
2017 ◽  
Vol 7 (45) ◽  
pp. 28556-28563 ◽  
Author(s):  
Jianzhi Huang ◽  
Silan Bai ◽  
Guoqing Yue ◽  
Wenxue Cheng ◽  
Lishi Wang

Coordination matrix/signal amplifier strategy for simultaneous electrochemical determination of cadmium(ii), lead(ii), copper(ii) and mercury(ii) ions based on polyfurfural film/multi-walled carbon nanotubes modified electrode.


RSC Advances ◽  
2015 ◽  
Vol 5 (10) ◽  
pp. 7237-7244 ◽  
Author(s):  
Xiaoyu Li ◽  
Hongbo Gu ◽  
Jiurong Liu ◽  
Huige Wei ◽  
Song Qiu ◽  
...  

The multi-walled carbon nanotube (MWNT) nanocomposites with homogenously anchored nanomagnetite of 10–20 nm prepared by a hydrothermal-annealing method exhibit excellent performances as anode materials for lithium ion batteries.


2003 ◽  
Vol 773 ◽  
Author(s):  
Sathyajith Ravindran ◽  
Sumit Chaudhary ◽  
Mihrimah Ozkan ◽  
Cengiz S. Ozkan

AbstractWe report the controlled synthesis of multi-walled Carbon Nanotube-Quantum Dot (CNT-QD) heterojunctions using the Ethylene Carbodiimide Coupling procedure (EDC). Thiol stabilized ZnS capped CdSe quantum dots containing amine terminal groups (QDNH2) were conjugated with acid treated Multi-Walled Carbon Nanotubes (MWCNT) ranging from 400 nm to 4νm in length. SEM, TEM and FTIR were used to characterize the conjugation process.


2017 ◽  
Vol 9 (35) ◽  
pp. 5149-5155 ◽  
Author(s):  
Zhenliang Li ◽  
Zunli Mo ◽  
Ruibin Guo ◽  
Shujuan Meng ◽  
Ruijuan Wang ◽  
...  

A novel chiral electrochemical sensor based on hydroxyethyl chitosan (HECS) covalently binding with the carboxylic multi-walled carbon nanotubes (MWCNT–COOH) was fabricated for discrimination of tryptophan (Trp) enantiomers.


RSC Advances ◽  
2014 ◽  
Vol 4 (75) ◽  
pp. 39645-39650 ◽  
Author(s):  
Li Fu ◽  
Guosong Lai ◽  
Peter J. Mahon ◽  
James Wang ◽  
Deming Zhu ◽  
...  

A simple one-step electro-deposition method was employed for the synthesis of silver dendritic structures with the aid of graphene oxide (GO) modified multi-walled carbon nanotubes (MWCNTs) which are dispersed in an AgNO3 solution.


Sign in / Sign up

Export Citation Format

Share Document