scholarly journals Three-dimensional foam-type current collectors for rechargeable batteries: A short review

2021 ◽  
Vol 10 ◽  
pp. 100065
Author(s):  
Nurbolat Issatayev ◽  
Arailym Nuspeissova ◽  
Gulnur Kalimuldina ◽  
Zhumabay Bakenov
Nano Research ◽  
2014 ◽  
Vol 8 (3) ◽  
pp. 990-1004 ◽  
Author(s):  
Sangbaek Park ◽  
Hyun-Woo Shim ◽  
Chan Woo Lee ◽  
Hee Jo Song ◽  
Ik Jae Park ◽  
...  

2017 ◽  
Vol 114 (18) ◽  
pp. 4613-4618 ◽  
Author(s):  
Dingchang Lin ◽  
Jie Zhao ◽  
Jie Sun ◽  
Hongbin Yao ◽  
Yayuan Liu ◽  
...  

Rechargeable batteries based on lithium (Li) metal chemistry are attractive for next-generation electrochemical energy storage. Nevertheless, excessive dendrite growth, infinite relative dimension change, severe side reactions, and limited power output severely impede their practical applications. Although exciting progress has been made to solve parts of the above issues, a versatile solution is still absent. Here, a Li-ion conductive framework was developed as a stable “host” and efficient surface protection to address the multifaceted problems, which is a significant step forward compared with previous host concepts. This was fulfilled by reacting overstoichiometry of Li with SiO. The as-formed LixSi–Li2O matrix would not only enable constant electrode-level volume, but also protect the embedded Li from direct exposure to electrolyte. Because uniform Li nucleation and deposition can be fulfilled owing to the high-density active Li domains, the as-obtained nanocomposite electrode exhibits low polarization, stable cycling, and high-power output (up to 10 mA/cm2) even in carbonate electrolytes. The Li–S prototype cells further exhibited highly improved capacity retention under high-power operation (∼600 mAh/g at 6.69 mA/cm2). The all-around improvement on electrochemical performance sheds light on the effectiveness of the design principle for developing safe and stable Li metal anodes.


2016 ◽  
Vol 9 (4) ◽  
pp. 1261-1268 ◽  
Author(s):  
Filippo Berto ◽  
Relly Victoria V. Petrescu ◽  
Florian Ion T. Petrescu

2019 ◽  
Vol 7 (11) ◽  
pp. 6267-6274 ◽  
Author(s):  
Wei Deng ◽  
Shanshan Liang ◽  
Xufeng Zhou ◽  
Fei Zhao ◽  
Wenhua Zhu ◽  
...  

An ultrathin and conformal ion conductive coating is realized on 3D current collectors for preventing the irreversible reaction between the electrolyte and Li metal, which has been confirmed by in situ optical observation. At the high areal capacity of 10 mA h cm−2 for the Li metal anode, a stable CE of 98.9% for 800 h can be achieved.


2016 ◽  
Vol 2 (10) ◽  
pp. e1600495 ◽  
Author(s):  
Bo-Quan Li ◽  
Cheng Tang ◽  
Hao-Fan Wang ◽  
Xiao-Lin Zhu ◽  
Qiang Zhang

Perovskite oxides with poor conductivity call for three-dimensional (3D) conductive scaffolds to demonstrate their superb reactivities for oxygen evolution reaction (OER). However, perovskite formation usually requires high-temperature annealing at 600° to 900°C in air, under which most of the used conductive frameworks (for example, carbon and metal current collectors) are reductive and cannot survive. We propose a preoxidization coupled electrodeposition strategy in which Co2+ is preoxidized to Co3+ through cobalt Fenton reaction in aqueous solution, whereas the reductive nickel framework is well maintained during the sequential annealing under nonoxidative atmosphere. The in situ–generated Co3+ is inherited into oxidized perovskites deposited on 3D nickel foam, rendering the monolithic perovskite electrocatalysts with extraordinary OER performance with an ultralow overpotential of 350 mV required for 10 mA cm−2, a very small Tafel slope of 59 mV dec−1, and superb stability in 0.10 M KOH. Therefore, we inaugurate a unique strategy for in situ hybridization of oxidative active phase with reductive framework, affording superb reactivity of perovskite electrocatalyst for efficient water oxidation.


Sign in / Sign up

Export Citation Format

Share Document