scholarly journals Electrodeposition as a Versatile Tool for the Fabrication of Three-Dimensional Lithium-ion Rechargeable Batteries

Author(s):  
Chang Su ◽  
Man Sun ◽  
Pengju Guo ◽  
Lihuan Xu

Abstract The three-dimensional (3D) multiporous structure polyimides were obtained by introducing of the triphenylamine (TPA) unit as linkage in the pyromellitic-based polyimide (N1) and the naphthalene-1,4,5,8-tetracarboxylic-based polyimides (N2), respectively. Then, the functional polyimides were explored as the anode of lithium ion batteries instead of as traditional cathode. As a result, the obtained triphenylamine-based polyimides exhibited a good reversible capacity and remarkably improved rate performance. Especially for the porous N1, it delivered a gradually increased capacity of up to 349 mAh/g during the cycle testing and a rate capacity of 400 mAh/g at an even high current density of 500 mA/g. Significant electrochemical performances for the triphenylamine-contained polyimide could be ascribed to the unique polyimide chemical structure and the constructed 3D multiporous structure with the high surface area (738 m2/g for N1 and 456 m2/g for N2), which benefited to excellent Li+ diffusion kinetics in porous electrode. This makes it promising as anode of rechargeable batteries with the remarkably electrochemical performances.


1995 ◽  
Vol 393 ◽  
Author(s):  
Randall T. Cygan ◽  
Henry R. Westrich ◽  
Daniel H. Doughty

ABSTRACTIn order to understand and evaluate materials for use in lithium ion rechargeable battery electrodes, we have modeled the crystal structures of various manganese oxide and lithium manganese oxide compounds. We have modeled the MnO2 polymorphs and several spinels with intermediate compositions based on the amount of lithium inserted into the tetrahedral site. Three-dimensional representations of the structures provide a basis for identifying site occupancies, coordinations, manganese valence, order-disorder, and potentially new dopants for enhanced cathode behavior. X-ray diffraction simulations of the crystal structures provide good agreement with observed patterns for synthesized samples. Ionic modeling of these materials consists of an energy minimization approach using Coulombic, repulsive, and van der Waals interactions. Modeling using electronic polarizabilities (shell model) allows a systematic analysis of changes in lattice energy, cell volume, and the relative stability of doped structures using ions such as aluminum, titanium, nickel, and cobalt.


Author(s):  
Yuhan Wu ◽  
Chenglin Zhang ◽  
Huaping Zhao ◽  
Yong Lei

In next-generation rechargeable batteries, sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs) have been considered as attractive alternatives to lithium-ion batteries due to their cost competitiveness. Anodes with complicated electrochemical mechanisms...


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1091
Author(s):  
Eva Gerold ◽  
Stefan Luidold ◽  
Helmut Antrekowitsch

The consumption of lithium has increased dramatically in recent years. This can be primarily attributed to its use in lithium-ion batteries for the operation of hybrid and electric vehicles. Due to its specific properties, lithium will also continue to be an indispensable key component for rechargeable batteries in the next decades. An average lithium-ion battery contains 5–7% of lithium. These values indicate that used rechargeable batteries are a high-quality raw material for lithium recovery. Currently, the feasibility and reasonability of the hydrometallurgical recycling of lithium from spent lithium-ion batteries is still a field of research. This work is intended to compare the classic method of the precipitation of lithium from synthetic and real pregnant leaching liquors gained from spent lithium-ion batteries with sodium carbonate (state of the art) with alternative precipitation agents such as sodium phosphate and potassium phosphate. Furthermore, the correlation of the obtained product to the used type of phosphate is comprised. In addition, the influence of the process temperature (room temperature to boiling point), as well as the stoichiometric factor of the precipitant, is investigated in order to finally enable a statement about an efficient process, its parameter and the main dependencies.


Sign in / Sign up

Export Citation Format

Share Document