NiCo2O4 nanosheets in-situ grown on three dimensional porous Ni film current collectors as integrated electrodes for high-performance supercapacitors

2015 ◽  
Vol 286 ◽  
pp. 371-379 ◽  
Author(s):  
Tao Wang ◽  
Ying Guo ◽  
Bo Zhao ◽  
Shuhui Yu ◽  
Hai-Peng Yang ◽  
...  
Nano Research ◽  
2014 ◽  
Vol 8 (3) ◽  
pp. 990-1004 ◽  
Author(s):  
Sangbaek Park ◽  
Hyun-Woo Shim ◽  
Chan Woo Lee ◽  
Hee Jo Song ◽  
Ik Jae Park ◽  
...  

Author(s):  
Jiawei Wu ◽  
Jing Chen ◽  
Xiaodong Wang ◽  
An'an Zhou ◽  
Zhenglong Yang

For the higher safety and energy density, solid-state electrolyte with better mechanical strength, thermal and electrochemical stability is a perfect choice. To improve the performance of PEO, usage of low-cost...


2019 ◽  
Vol 7 (11) ◽  
pp. 6267-6274 ◽  
Author(s):  
Wei Deng ◽  
Shanshan Liang ◽  
Xufeng Zhou ◽  
Fei Zhao ◽  
Wenhua Zhu ◽  
...  

An ultrathin and conformal ion conductive coating is realized on 3D current collectors for preventing the irreversible reaction between the electrolyte and Li metal, which has been confirmed by in situ optical observation. At the high areal capacity of 10 mA h cm−2 for the Li metal anode, a stable CE of 98.9% for 800 h can be achieved.


2020 ◽  
Vol 46 (11) ◽  
pp. 17461-17468 ◽  
Author(s):  
Haibin Sun ◽  
Li'na Xu ◽  
Jiao Li ◽  
Yan'an Li ◽  
Tong Wu ◽  
...  

2016 ◽  
Vol 2 (10) ◽  
pp. e1600495 ◽  
Author(s):  
Bo-Quan Li ◽  
Cheng Tang ◽  
Hao-Fan Wang ◽  
Xiao-Lin Zhu ◽  
Qiang Zhang

Perovskite oxides with poor conductivity call for three-dimensional (3D) conductive scaffolds to demonstrate their superb reactivities for oxygen evolution reaction (OER). However, perovskite formation usually requires high-temperature annealing at 600° to 900°C in air, under which most of the used conductive frameworks (for example, carbon and metal current collectors) are reductive and cannot survive. We propose a preoxidization coupled electrodeposition strategy in which Co2+ is preoxidized to Co3+ through cobalt Fenton reaction in aqueous solution, whereas the reductive nickel framework is well maintained during the sequential annealing under nonoxidative atmosphere. The in situ–generated Co3+ is inherited into oxidized perovskites deposited on 3D nickel foam, rendering the monolithic perovskite electrocatalysts with extraordinary OER performance with an ultralow overpotential of 350 mV required for 10 mA cm−2, a very small Tafel slope of 59 mV dec−1, and superb stability in 0.10 M KOH. Therefore, we inaugurate a unique strategy for in situ hybridization of oxidative active phase with reductive framework, affording superb reactivity of perovskite electrocatalyst for efficient water oxidation.


Metals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1354
Author(s):  
Yang Tang ◽  
Zheguan Huang ◽  
Jianming Yang ◽  
Yonglin Xie

Binder jet 3D printing (BJ3DP) is an additive manufacturing technology that selectively deposits binder on powder to form a three-dimensional green body followed by sintering process. The low strength of green body and metallurgical issues limit the manufacture of Ti6Al4V parts with high-performance and that are lightweight. In this study, thermal-bubble inkjet technology was used to print Ti6Al4V parts via jetting low-concentration in-situ polymer binders. In addition, a method for mixing fine powder was used to enhance the capillary force of the powder bed and mechanical properties of the parts. The results show that the capillary force was enhanced from 8.35 kPa for pure powder to 16.27 kPa for mixed powder by mixing fine powder. The compression strength of green body was enhanced from 1.5 MPa to 3.21 MPa. After sintering, the sample with mixed powder sintered at 1420 °C for 2 h had achieved a maximum density of 95.2%, microhardness of 316 HV, and yield stress of 589 MPa. The relative density of 95.2% of Ti6Al4V parts fabricated by BJ3DP technology in our study is significantly higher than the value reported in the existing literature. Finally, the porous structure with a size of 550 μm was fabricated. Results presented demonstrate that BJ3DP can produce Ti6Al4V parts with excellent properties.


Sign in / Sign up

Export Citation Format

Share Document