Finite element analysis of the contact forces between a viscoelastic sphere and rigid plane

2012 ◽  
Vol 226 ◽  
pp. 130-142 ◽  
Author(s):  
Q.J. Zheng ◽  
H.P. Zhu ◽  
A.B. Yu
2013 ◽  
Vol 477-478 ◽  
pp. 45-48
Author(s):  
Qing Dun Zeng ◽  
Xin Pan

The joint simulation of Virtual Prototype Technology and Finite Element Method was utilized to perform the analysis of both strength and fatigue life of the input axis in a six-speed vehicle transmission with three axes. Firstly, the software Pro/E was used to establish a 3-D model of the input axis and its gear engagement, and the model was then imported into a software ADMAS of the virtual prototype technology to perform a dynamic simulation analysis. Secondly, the gear contact forces obtained by above-mentioned analysis were used as the loading condition of finite element analysis of the input axis to check its strength. Finally, the fatigue of meshing teeth on the input axis was analyzed to determine the fatigue life of the input axis. The results show that the static strength of input axis can meet the requirement of safe use under the working condition of input torque T=1.5kN·m, and the minimum fatigue life on the place where the stress is maximum at flexural root of a tooth is about 2 million times.


2019 ◽  
Vol 184 (Supplement_1) ◽  
pp. 627-636 ◽  
Author(s):  
Tejas P Chillale ◽  
Nam Ho Kim ◽  
Larry N Smith

Abstract This study was designed to test the hypothesis that: “A properly designed implant that harnesses the principle of the incompressibility of fluids can improve the weight carrying ability of an amputee’s residual femur and reduce the frictional forces at the stump external socket interface.” The hypothesis was tested both mechanically on an Amputee Simulation Device (ASD) and through Finite Element Analysis (FEA) modeling software. With the implant attached to the femur, the FEA and ASD demonstrated that the femur carried 90% and 93% respectively of the force of walking. Without the implant, the FEA model and ASD femur carried only 35% and 77%, respectively, of the force of walking. Statistical calculations reveal three (3) degrees of separation (99% probability of non-random significant difference) between with and without implant data points. FEA modeling demonstrates that the normal contact forces and shear forces are pushed the distal weight-bearing area of the amputee stump, relieving the lateral stump of frictional forces. The ASD mechanical and FEA modeling data validate each other with both systems supporting the hypotheses with confidence intervals of three degrees of separation between with implant and without implant models.


2012 ◽  
Vol 12 (06) ◽  
pp. 1250054 ◽  
Author(s):  
YAO CHEN ◽  
JIAN FENG

Some types of rigid origami possess specific geometric properties. They have a single degree of freedom, and can experience large configuration changes without cut or being stretched. This study presents a numerical analysis and finite element simulation on the folding behavior of deployable origami structures. Equivalent pin-jointed structures were established, and a Jacobian matrix was formed to constrain the internal mechanisms in each rigid plane. A nonlinear iterative algorithm was formulated for predicting the folding behavior. The augmented compatibility matrix was updated at each step for correcting the incompatible strains. Subsequently, finite element simulations on the deployable origami structures were carried out. Specifically, two types of generalized deployable origami structures combined by basic parts were studied, with some key parameters considered. It is concluded that, compared with the theoretical values, both the solutions obtained by the nonlinear algorithm and finite element analysis are in good agreement, the proposed method can well predict the folding behavior of the origami structures, and the error of the numerical results increases with the increase of the primary angle.


Author(s):  
Silvia Pianigiani ◽  
Friedl De Groote ◽  
Lennart Scheys ◽  
Pierre Gillen ◽  
Luc Labey ◽  
...  

In this study, we present an innovative methodology (Figure 1) to calculate patient specific tibio-femoral (TF) contact forces by integrating medical image data, 3D skin-mounted marker trajectories, ground reaction forces, electromyography (EMG) data and finite element analysis (FEA). The muscle redundancy problem is solved through an EMG-constrained optimization approach. Calculated muscle forces are input to a FEA to calculate TF contact forces. Kinematics of the degrees of freedom (DOFs) of the knee that cannot be accurately assessed from the trajectories of skin-mounted markers, are estimated using a novel iterative procedure which combines muscle force calculation with dynamic FEA. The presented methodology is applied to analyze TF contact forces of a walking trial performed on an instrumented treadmill of which the speed was sequentially ramped up and down. The results presented in this abstract will be validated against the in-vivo measured TF contact forces.


2007 ◽  
Vol 130 (1) ◽  
Author(s):  
Chao-Chieh Lan ◽  
Kok-Meng Lee

A compliant gripper gains its dextral manipulation by the flexural motion of its fingers. It is a preferable device as compared to grippers with multijoint actuations because of reduced fabrication complexity and increased structural reliability. The prediction of contact forces and deflected shape are essential to the design of a compliant finger. A formulation based on nonlinear constrained minimization is presented to analyze contact problems of compliant fingers. The deflections by flexural and shear deformations are both considered. For a planar finger, this formulation further reduces the domain of discretization by one dimension. Hence, it offers a simpler formulation and is computationally more efficient than other methods such as finite element analysis. This method is rather generic and can facilitate design analysis and optimization of compliant fingers. We illustrate some of these attractive features with two types of compliant fingers, one for object handling and the other for snap-fit assembly applications.


Sign in / Sign up

Export Citation Format

Share Document