Simulation of the Energy–Force Parameters of Planetary Ball Mill Processing and Estimation of Their Influence on the Particle Size in an AMg2 Alloy/Graphite Composite Powder

2019 ◽  
Vol 2019 (1) ◽  
pp. 24-30 ◽  
Author(s):  
V. G. Gusev ◽  
A. V. Sobol’kov ◽  
A. V. Aborkin ◽  
M. I. Alymov
2020 ◽  
Vol 368 ◽  
pp. 149-159 ◽  
Author(s):  
Pedro L. Guzzo ◽  
Filipe B. Marinho de Barros ◽  
Bruno R. Soares ◽  
Juliano B. Santos

2013 ◽  
Vol 833 ◽  
pp. 75-79 ◽  
Author(s):  
Xin Xin He ◽  
Guo You Gan ◽  
Ji Kang Yan ◽  
Jing Hong Du ◽  
Jia Ming Zhang ◽  
...  

The ZnO varistor ceramics were fabricated through microwave sintering at 800~1150°C using ZnO powder doped and undoped TiO2 prepared by planetary ball mill. And the effects of milling time, sintering temperature and doping on microwave sintering technique have been studied. The result shows that the powder is more homogeneously and with smaller particle size with the increasing of milling time, therefore the electric properties is improved. However the particle size and the electric properties tend towards stability after 20h milling time. The density and electric properties increase with the increasing of sintering temperature, but decrease sharply at 1100°C, so the best sintering temperature is 1100°C. Doping TiO2 improves the electric properties of ZnO, however the electric properties decrease with more than 2.5% doping.


2021 ◽  
Vol 333 ◽  
pp. 02016
Author(s):  
Fumie Hirosawa ◽  
Tomohiro Iwasaki ◽  
Masashi Iwata

To investigate the mechanical energy applying to the particles in a grinding process using a planetary ball mill, the impact energy of particles was estimated by simulating the behavior of the particles and grinding balls using the discrete element method (DEM) under different conditions of the size and number of particles, corresponding to their variations during milling. As the impact energy contributing to the particle breakage, we focused on the particle impact energy generated at particle-to-grinding ball/wall and particle-to-particle collisions. The particle size and the number of particles affected the level of particle impact energy at a single collision and the number of collisions of particles, respectively, resulting in an increase of the total impact energy of particles with decreasing particle size and increasing number of particles. The result suggests that milling conditions such as the size of grinding balls should be adjusted appropriately based on the variation of the size and number of particles so that the particles can receive large amounts of the impact energy during milling.


2015 ◽  
Vol 1089 ◽  
pp. 76-79
Author(s):  
Liang Chen ◽  
Zhan Wen He

Cu - SiC composite powders were discussed in this paper the microstructure after ball mill, through to the ball mill after Cu-SiC composite powder particle size and lattice constant analysis, confirmed the high-energy ball mill to Cu-SiC micro structure of the binary alloy. The experimental results show that the ball mill after 20 h, Cu particle size has a larger extent reduce after high-energy ball mill and SiC lattice constant increase.


2013 ◽  
Vol 795 ◽  
pp. 711-715 ◽  
Author(s):  
N.Z.F. Mukhtar ◽  
M.Z. Borhan ◽  
Mohamad Rusop ◽  
Saifollah Abdullah

Ball milling is a top down approach and a method to reduce size of particle while Zeolite is a valuable inorganic materials having wide variety of applications. In this paper, ball milling of commercial synthetic Zeolite powder was studied with their time varied. Wet ball milling was selected as a potential means to decrease the particle size of Zeolite over dry grinding. The parameters that included in this study were rotational speed, balls to powder ratio, water to powder ratio and milling time. These nanozeolite were characterized via Zeta-sizer nanoseries of particle sizer, FESEM, and also FTIR. Results showed that commercial synthetic Zeolite powder with particle size larger than 45 μm may be reduced into the size range between 0.2 0.3 μm by planetary ball mill.


2021 ◽  
Vol 23 (3) ◽  
pp. 100-111
Author(s):  
Ekaterina Abdulmenova ◽  
◽  
Sergey Kulkov ◽  

Introduction. Industrial nickel-titanium alloy PN55T45 closed to the equiatomic composition is widely used for the manufacture of products by powder metallurgy. To achieve high physical and mechanical properties of the material obtained by this method, it is necessary to use fine powders, which can be obtained by implementing high-intensity grinding in a planetary ball mill. However, during such treatment, contamination, powder oxidation and particle aggregation, etc. are possible. To solve this problem, preliminary hydrogenation is proposed for subsequent grinding in a planetary ball mill. The aim of the work is to study the effect of hydrogen on the grinding of titanium nickelide powder. Materials and methods. The morphology and average particle size of the powders were studied by scanning electron microscopy. The structure and phase composition of the powders were investigated by the methods of X-ray structural and X-ray phase analysis. The data of X-ray structural analysis were used to estimate the dislocation density. Results and discussions. It is shown that the use of pre-hydrogenation for 180 minutes before machining allows reducing the average particle size by about a half. After mechanical treatment of the powder, the parameters of the crystal lattices of the TiNi (austenite), Ti2Ni and Ni3Ti phases do not change within the error range. After mechanical treatment of the powder with preliminary hydrogenation, the crystal lattice parameter of only the Ti2Ni phase changes significantly, in particular, at 180 minutes of hydrogenation, the lattice parameter increases to 1.1457 ± 5×10-4 nm, which corresponds to the stoichiometry of the Ti2NiH0.5 hydride with a lattice parameter of 1.1500 nm. The highest dislocation density estimated by X-ray diffraction analysis is contained in the Ti2Ni (511) phase than in the TiNi (austenite) (110) and Ni3Ti (202) phases. Thus, preliminary hydrogenation can be an effective method of powder grinding due to the formation of brittle hydride and suppression of the aggregation of fine particles during high-intensity mechanical treatment.


2014 ◽  
Vol 625 ◽  
pp. 38-41
Author(s):  
Rashidah Mohammed Hamidi ◽  
Zakaria Man ◽  
Khairun Azizi Azizli ◽  
Lukman Ismail ◽  
Mohd Fadhil Nuruddin

Fly ash has a high potential to be converted into geopolymeric material due to its abundant supplies and low cost. However, large particle size of the fly ash caused low reactivity which results in low properties of the end product. The improvement on the fly ash properties by mechanical activation allows it as a new possible raw material in wider application besides solving the low reactivity issue which hindered its range of utilization. In this study, fly ash was mechanically activated by high energy planetary ball mill for 1 hour at different speed, ranging from 100 to 350 rpm and with varied ball to powder ratio (2:1, 3:1 and 4:1). The effects towards its particle size, specific surface area and morphology were determined by particle size analyzer and SEM. It was observed that, increasing of speed to 350 rpm and 4:1 ball to powder ratio (BPR) results in finest size of fly ash where at d (0.1), d (0.5) and d (0.9) the sizes were 1.861, 6.765 and 17.065μm respectively and largest surface specific area (1.46 m2/g).


Sign in / Sign up

Export Citation Format

Share Document