TiO 2 -zeolite photocatalysts made of metakaolin and rice husk ash for removal of methylene blue dye

2017 ◽  
Vol 313 ◽  
pp. 417-426 ◽  
Author(s):  
Naruemon Setthaya ◽  
Prinya Chindaprasirt ◽  
Shu Yin ◽  
Kedsarin Pimraksa
2018 ◽  
Vol 197 ◽  
pp. 05002 ◽  
Author(s):  
Citra Deliana Dewi Sundari ◽  
Soni Setiadji ◽  
Yusuf Rohmatullah ◽  
Sanusi Sanusi ◽  
Denia Febby Nurbaeti ◽  
...  

Rice husk has a high silica content, so it can be utilized as silica source for zeolite synthesis. In this research, synthesis of zeolite L has been done using silica from rice husk ash without organic template. The synthesized zeolite L is then used as an adsorbent to adsorb methylene blue dye. The steps of zeolite L synthesis include: silica extraction from rice husk ash using NaOH and zeolite L synthesis using hydrothermal method with molar ratio 10 SiO2: Al2O3: 4 K2O: 100 H2O at 170°C for 24 hours. The resulting Zeolite L was then characterized by XRD and SEM. The absorption capacity of methylene blue solution by zeolite L was observed experimentally through the effect of pH of the solution, contact time, and initial concentration of the solution, then determining the isotherm and its absorption kinetics. From XRD and SEM results of zeolite L sample, it is shown that zeolite L has been formed and its particle morphology is a hollow cylinder with cylinder diameter of 0.049 - 0.123 μm. The adsorption process refers to the Freundlich isotherm model which provides the highest correlation coefficient. The methylene blue adsorption process by zeolite L follows pseudo second-order kinetics.


2020 ◽  
Vol 306 ◽  
pp. 123202 ◽  
Author(s):  
Anees Ahmad ◽  
Nawaz Khan ◽  
Balendu Shekher Giri ◽  
Pankaj Chowdhary ◽  
Preeti Chaturvedi

Author(s):  
N.Z. Mohamed ◽  
A.S.N. Baanu ◽  
B. Keerthana ◽  
B.M.W.P.K. Amarasinghe

Author(s):  
Saraa Muwafaq Ibrahim ◽  
Ziad T. Abd Ali

Batch experiments have been studied to remove methylene blue dye (MB) from aqueous solution using modified bentonite. The modified bentonite was synthesized by replacing exchangeable calcium cations in natural bentonite with cationic surfactant cetyl trimethyl ammonium bromide (CTAB). The characteristics of modified bentonite were studied using different analysis such as Scanning electronic microscopy (SEM), Fourier transform infrared spectrometry (FTIR) and surface area. Where SEM shows the natural bentonite has a porous structure, a rough and uneven appearance with scattered and different block structure sizes, while the modified bentonite surface morphology was smooth and supplemented by a limited number of holes. On other hand, (FTIR) analysis that proved NH group aliphatic and aromatic group of MB and silanol group are responsible for the sorption of contaminate. The organic matter peaks at 2848 and 2930 cm-1 in the spectra of modified bentonite which are sharper than those of the natural bentonite were assigned to the CH2 scissor vibration band and the symmetrical CH3 stretching absorption band, respectively, also the 2930 cm-1 peak is assigned to CH stretching band. The batch study was provided the maximum removal efficiency (99.99 % MB) with a sorption capacity of 129.87 mg/g at specified conditions (100 mg/L, 25℃, pH 11 and 250rpm). The sorption isotherm data fitted well with the Freundlich isotherm model. The kinetic studies were revealed that the sorption follows a pseudo-second-order kinetic model which indicates chemisorption between sorbent and sorbate molecules.


Sign in / Sign up

Export Citation Format

Share Document