Multi-objective optimization of a gas cyclone separator using genetic algorithm and computational fluid dynamics

2018 ◽  
Vol 325 ◽  
pp. 347-360 ◽  
Author(s):  
Xun Sun ◽  
Joon Yong Yoon
2019 ◽  
Vol 141 (7) ◽  
Author(s):  
Ya Ge ◽  
Feng Xin ◽  
Yao Pan ◽  
Zhichun Liu ◽  
Wei Liu

Recently, energy saving problem attracts increasing attention from researchers. This study aims to determine the optimal arrangement of a tube bundle to achieve the best overall performance. The multi-objective genetic algorithm (MOGA) is employed to determine the best configuration, where two objective functions, the average heat flux q and the pressure drop Δp, are selected to evaluate the performance and the consumption, respectively. Subsequently, a decision maker method, technique for order preference by similarity to an ideal solution (TOPSIS), is applied to determine the best compromise solution from noninferior solutions (Pareto solutions). In the optimization procedure, all the two-dimensional (2D) symmetric models are solved by the computational fluid dynamics (CFD) method. Results show that performances alter significantly as geometries of the tube bundle changes along the Pareto front. For the case 1 (using staggered arrangement as initial), the optimal q varies from 2708.27 W/m2 to 3641.25 W/m2 and the optimal Δp varies from 380.32 Pa to 1117.74 Pa, respectively. For the case 2 (using in-line arrangement as initial), the optimal q varies from 2047.56 W/m2 to 3217.22 W/m2 and the optimal Δp varies from 181.13 Pa to 674.21 Pa, respectively. Meanwhile, the comparison between the optimal solution with maximum q and the one selected by TOPSIS indicates that TOPSIS could reduce the pressure drop of the tube bundle without sacrificing too much heat transfer performance.


Author(s):  
B Najafi ◽  
H Najafi ◽  
M D Idalik

In this study, computational fluid dynamics (CFD) analysis is utilized in order to determine the convective heat transfer coefficient of an engine air-cooling system in different air velocity conditions. Various models with different geometric configurations are considered. Based on the CFD results, two formulas are proposed to approximate the values of convective heat transfer coefficients in zero and non-zero air velocities. Finally, two conflicting objective functions including volume of the required material for construction of the finned cylinder and heat release per unit temperature difference are considered. Multi-objective optimization using genetic algorithm is utilized, which generates a multiple set of solutions, each of which is a trade-off between two objectives. The user can select each of the optimal geometric configurations based on the project's requirements. In other words, considering the desired thermal design, designer is able to find the minimum volume of the required material for construction of the finned cylinder, which in turn leads to the least possible capital cost.


Sign in / Sign up

Export Citation Format

Share Document