Numerical study of fine particles behaviors in a packed bed with lateral injection using CFD-DEM

Author(s):  
Heng Zhou ◽  
Xu Tian ◽  
Mingyin Kou ◽  
Shengli Wu ◽  
Yansong Shen
Author(s):  
Anthony Basuni Hamzah ◽  
Shinichi Ookawara ◽  
Shiro Yoshikawa ◽  
Hideyuki Matsumoto

Chemosphere ◽  
2020 ◽  
Vol 238 ◽  
pp. 124600 ◽  
Author(s):  
Tse-Lun Chen ◽  
Tzu-Hao Huang ◽  
Ching-Hsiang Hsu ◽  
Yi-Hung Chen ◽  
Shu-Yuan Pan ◽  
...  

Author(s):  
Geoffrey J. Peter

The accident scenario resulting from blockages due to the retention of dust in the coolant gas or from the rupture of one or more fuel particles used in the High Temperature Gas Cooled (Pebble Bed) Nuclear Reactors considered for the next generation of Advanced High Temperature Reactors (AHTR), for nuclear power production, and for high-temperature hydrogen production using nuclear reactors to reduce the carbon footprint is examined in this paper. Blockages can cause local variations in flow and heat transfer that may lead to hot spots within the bed that could compromise reactor safety. Therefore, it is important to know the void fraction distribution and the interstitial velocity field in the packed bed. The blockage for this numerical study simulated a region with significantly lower void than that in the rest of the bed. Finite difference technique solved the simplified continuity, momentum, and energy equations. Any meaningful outcome of the solution depended largely upon the validity of the boundary conditions. Among them, the inlet and outlet velocity profiles required special attention. Thus, a close approximation to these profiles obtained from an experimental set-up established the boundary conditions. This paper presents the development of the elliptic-partial differential equation for a bed of pebbles, and the solution procedure. The paper also discusses velocity and temperature profiles obtained from both numerical and experimental setup, with and without effect of blockage. In addition, the paper compares the results obtained from the experimental set-up with numerical simulation using a commercially available code that uses finite element techniques.


Author(s):  
Souheyla Khaldi ◽  
A. Nabil Korti ◽  
Said Abboudi

AbstractThis article provides numerical study of the solar chimney (SC) assembled with a reversed absorber and packed bed for the indirect-mode solar dryer. The present study was designed to determine the effects of using the SC in three configuration and physical proprieties of the packed (thickness and porosity) on the dynamic and thermal behavior of airflow. The results reveal that (1) using SC without storage material can increase the maximum mass flow rate up to 5%. However, integrating a storage material in the SC can improve the mass flow rate up to 32% during nighttime; (2) the use of a packed bed can decrease the crops temperature fluctuation until about 76% and increase the operating time of the solar dryer up to 12.5 hours rather than 10 hours in the case without packed bed; (3) increasing the porosity from 0.1 to 0.8 can increase the maximum temperature by about 10°C.


2016 ◽  
Author(s):  
Qasim A. Ranjha ◽  
Nasser Vahedi ◽  
Alparslan Oztekin

Thermal energy storage by reversible gas-solid reaction has been selected as a thermochemical energy storage system. Simulations are conducted to investigate the dehydration of Ca(OH)2 and the hydration of CaO for thermal energy storage and retrieval, respectively. The rectangular packed bed is heated indirectly by air used as a heat transfer fluid (HTF) while the steam is transferred through the upper side of the bed. Transient mass transport and heat transfer equations coupled with chemical kinetics equations for a two dimensional geometry have been solved using finite element method. Numerical results have been validated by comparing against results of previous measurements and simulations. The effect of geometrical and operational parameters including the material properties on overall storage and retrieval process has been investigated. The co-current and counter-current flow arrangements for steam and heat transfer fluid have been considered.


2017 ◽  
Vol 9 (4) ◽  
pp. 157-168 ◽  
Author(s):  
Shahid Rabbani ◽  
Mohamed Sassi ◽  
Tariq Shamim

With the passage of time for chemical operations involving packed-bed reactors, especially in petroleum refining and petrochemical industries, non-filterable fines such as coke, corrosion products and fine clay in oilsands bitumen deposit on the catalyst particles. The gradual entrapment and deposition of fine particles of range 0.7–20 µm cause the pore-plugging phenomenon to occur which consequently blocks the flow passages inside the porous medium. To understand the plugging phenomenon and its effect on hydrodynamic of the reactor, we developed a computational fluid dynamics model which is based on reactor collection efficiency, filtration rate, Brownian motion and interfacial momentum exchange terms to simulate the pressure drop due to deposition of fine particles in real conditions. With the help of this model, we have studied the effect of fines deposition on bed porosity and clogging. This is for the first time that Ansys Fluent has been used to simulate fine-particle deposition in packed-bed conditions. The result was a Eulerian–Eulerian 2-D computational fluid dynamics model which considered all the three phases, i.e. liquid, catalyst and fine particles. The results were validated against the experiments reported in the literature and reached good agreement.


2018 ◽  
Vol 227 ◽  
pp. 719-730 ◽  
Author(s):  
Jingyu Wang ◽  
Jian Yang ◽  
Zhilong Cheng ◽  
Yan Liu ◽  
Yitung Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document