scholarly journals Fire affects the taxonomic and functional composition of soil microbial communities, with cascading effects on grassland ecosystem functioning

2019 ◽  
Vol 26 (2) ◽  
pp. 431-442 ◽  
Author(s):  
Sihang Yang ◽  
Qiaoshu Zheng ◽  
Yunfeng Yang ◽  
Mengting Yuan ◽  
Xingyu Ma ◽  
...  

2013 ◽  
Vol 15 (2) ◽  
pp. 77-85 ◽  
Author(s):  
Pierre Mariotte ◽  
Charlotte Vandenberghe ◽  
Claire Meugnier ◽  
Pierre Rossi ◽  
Richard D. Bardgett ◽  
...  


mBio ◽  
2011 ◽  
Vol 2 (4) ◽  
Author(s):  
Jizhong Zhou ◽  
Ye Deng ◽  
Feng Luo ◽  
Zhili He ◽  
Yunfeng Yang

ABSTRACT Understanding the interactions among different species and their responses to environmental changes, such as elevated atmospheric concentrations of CO2, is a central goal in ecology but is poorly understood in microbial ecology. Here we describe a novel random matrix theory (RMT)-based conceptual framework to discern phylogenetic molecular ecological networks using metagenomic sequencing data of 16S rRNA genes from grassland soil microbial communities, which were sampled from a long-term free-air CO2 enrichment experimental facility at the Cedar Creek Ecosystem Science Reserve in Minnesota. Our experimental results demonstrated that an RMT-based network approach is very useful in delineating phylogenetic molecular ecological networks of microbial communities based on high-throughput metagenomic sequencing data. The structure of the identified networks under ambient and elevated CO2 levels was substantially different in terms of overall network topology, network composition, node overlap, module preservation, module-based higher-order organization, topological roles of individual nodes, and network hubs, suggesting that the network interactions among different phylogenetic groups/populations were markedly changed. Also, the changes in network structure were significantly correlated with soil carbon and nitrogen contents, indicating the potential importance of network interactions in ecosystem functioning. In addition, based on network topology, microbial populations potentially most important to community structure and ecosystem functioning can be discerned. The novel approach described in this study is important not only for research on biodiversity, microbial ecology, and systems microbiology but also for microbial community studies in human health, global change, and environmental management. IMPORTANCE The interactions among different microbial populations in a community play critical roles in determining ecosystem functioning, but very little is known about the network interactions in a microbial community, owing to the lack of appropriate experimental data and computational analytic tools. High-throughput metagenomic technologies can rapidly produce a massive amount of data, but one of the greatest difficulties is deciding how to extract, analyze, synthesize, and transform such a vast amount of information into biological knowledge. This study provides a novel conceptual framework to identify microbial interactions and key populations based on high-throughput metagenomic sequencing data. This study is among the first to document that the network interactions among different phylogenetic populations in soil microbial communities were substantially changed by a global change such as an elevated CO2 level. The framework developed will allow microbiologists to address research questions which could not be approached previously, and hence, it could represent a new direction in microbial ecology research.



2020 ◽  
Author(s):  
Cameron Wagg ◽  
Yann Hautier ◽  
Sarah Pellkofer ◽  
Samiran Banerjee ◽  
Bernhard Schmid ◽  
...  

AbstractTheoretical and empirical advances have revealed the importance of biodiversity for stabilizing ecosystem functions through time. Yet despite the global degradation of soils, how the loss of soil microbial diversity can de-stabilizes ecosystem functioning is unknown. Here we experimentally quantified the contribution diversity and the temporal dynamics in the composition of soil microbial communities to the temporal stability of four key ecosystem functions related to nutrient and carbon cycling. Soil microbial diversity loss reduced the temporal stability of all ecosystem functions and was particularly strong when over 50% of microbial taxa were lost. The stabilizing effect of soil biodiversity was linked to asynchrony among microbial taxa whereby different soil fungi and bacteria were associated with different ecosystem functions at different times. Our results emphasize the need to conserve soil biodiversity in order to ensure the reliable provisioning of multiple ecosystems functions that soils provide to society.





2021 ◽  
Author(s):  
Seraina Lisa Cappelli ◽  
Luiz Domeignoz Horta ◽  
Viviana Loaiza ◽  
Anna-Liisa Laine

While the positive relationship between plant biodiversity and ecosystem functioning (BEF) is relatively well-established, far less in known about the extent to which this relationship is mediated via below-ground microbial responses to plant diversity. Limited evidence suggests that the diversity of soil microbial communities is sensitive to plant community structure, and that diverse soil microbial communities promote functions desired of sustainable food production systems such as enhanced carbon sequestration and nutrient cycling. Here, we discuss available evidence on how plant diversity could be utilized to purposefully guide soil biodiversity in agricultural systems that are typically depleted of biodiversity, and are notoriously sensitive to both biotic and abiotic stressors. We outline the direct and soil microbe-mediated mechanisms expected to promote a positive BEF relationship both above- and below-ground. Finally, we identify management schemes based on ecological theory and vast empirical support that can be utilized to maximize ecosystem functioning in agroecosystems via biodiversity implementation schemes.



2019 ◽  
Vol 85 (8) ◽  
Author(s):  
Gongwen Luo ◽  
Tingting Wang ◽  
Kaisong Li ◽  
Ling Li ◽  
Junwei Zhang ◽  
...  

ABSTRACT Climate change is predicted to alter precipitation and drought patterns, which has become a global concern as evidence accumulates that it will affect ecosystem services. Disentangling the ability of soil multifunctionality to withstand this stress (multifunctionality resistance) is a crucial topic for assessing the stability and adaptability of agroecosystems. In this study, we explored the effects of nutrient addition on multifunctionality resistance to drying-wetting cycles and evaluated the importance of microbial functional capacity (characterized by the abundances of genes involved in carbon, nitrogen and phosphorus cycles) for this resistance. The multifunctionality of soils treated with nitrogen (N) and straw showed a higher resistance to drying-wetting cycles than did nonamended soils. Microbial functional capacity displayed a positive linear relationship with multifunctionality resistance. Random forest analysis showed that the abundances of the archeal amoA (associated with nitrification) and nosZ and narG (denitrification) genes were major predictors of multifunctionality resistance in soils without straw addition. In contrast, major predictors of multifunctionality resistance in straw amended soils were the abundances of the GH51 (xylan degradation) and fungcbhIF (cellulose degradation) genes. Structural equation modeling further demonstrated the large direct contribution of carbon (C) and N cycling-related gene abundances to multifunctionality resistance. The modeling further elucidated the positive effects of microbial functional capacity on this resistance, which was mediated potentially by a high soil fungus/bacterium ratio, dissolved organic C content, and low pH. The present work suggests that nutrient management of agroecosystems can buffer negative impacts on ecosystem functioning caused by a climate change-associated increase in drying-wetting cycles via enriching functional capacity of microbial communities. IMPORTANCE Current climate trends indicate an increasing frequency of drying-wetting cycles. Such cycles are severe environmental perturbations and have received an enormous amount of attention. Prediction of ecosystem’s stability and adaptability requires a better mechanistic understanding of the responses of microbially mediated C and nutrient cycling processes to external disturbance. Assessment of this stability and adaptability further need to disentangle the relationships between functional capacity of soil microbial communities and the resistance of multifunctionality. Study of the physiological responses and community reorganization of soil microbes in response to stresses requires large investments of resources that vary with the management history of the system. Our study provides evidence that nutrient managements on agroecosystems can be expected to buffer the impacts of progressive climate change on ecosystem functioning by enhancing the functional capacity of soil microbial communities, which can serve as a basis for field studies.



2021 ◽  
Vol 12 ◽  
Author(s):  
Zhen Wang ◽  
Xiliang Li ◽  
Baoming Ji ◽  
Paul C. Struik ◽  
Ke Jin ◽  
...  

Grazing exclusion is an effective management practice to restore grassland ecosystem functioning. However, little is known about the role of soil microbial communities in regulating grassland ecosystem functioning during long-term ecosystem restorations. We evaluated the recovery of a degraded semiarid grassland ecosystem in northern China by investigating plant and soil characteristics and the role of soil microbial communities in ecosystem functioning after 22 years of grazing exclusion. Grazing exclusion significantly increased the alpha diversity and changed the community structure of bacteria, but did not significantly affect the alpha diversity or community structure of fungi. The higher abundance of copiotrophic Proteobacteria and Bacteroidetes with grazing exclusion was due to the higher carbon and nutrient concentrations in the soil, whereas the high abundance of Acidobacteria in overgrazed soils was likely an adaptation to the poor environmental conditions. Bacteria of the Sphingomonadaceae family were associated with C cycling under grazing exclusion. Bacteria of the Nitrospiraceae family, and especially of the Nitrospira genus, played an important role in changes to the N cycle under long-term exclusion of grazing. Quantitative PCR further revealed that grazing exclusion significantly increased the abundance of nitrogen fixing bacteria (nifH), ammonia oxidizers (AOA and AOB), and denitrifying bacteria (nirK and nosZ1). Denitrifying enzyme activity (DEA) was positively correlated with abundance of denitrifying bacteria. The increase in DEA under grazing exclusion suggests that the dependence of DEA on the availability of NO3– produced is due to the combined activity of ammonia oxidizers and denitrifiers. Our findings indicate that decades-long grazing exclusion can trigger changes in the soil bacterial diversity and composition, thus modulating the restoration of grassland ecosystem functions, carbon sequestration and soil fertility.



2020 ◽  
Author(s):  
Yu Zhang ◽  
Xiaoping Xin ◽  
Ruiqiang Li ◽  
Weibing Xun ◽  
Ruifu Zhang ◽  
...  

Abstract Background: Soil microorganisms are an important part of the grassland ecosystem and promote material transformation and energy flow in the entire ecological environment. Moreover, Hulun Buir grassland is the material basis for the development of animal husbandry. Therefore, it is of great scientific significance to study the changes of soil microbial community caused by grazing in Hulunbuir grassland for the sustainable and stable development of grassland ecosystem. Methods: The present research used high-throughput sequencing of soil microorganism (bacteria and fungi) genes to compare microbial communities in 6 levels of grazing intensity (0.00, 0.23, 0.34, 0.46, 0.69, and 0.92 Au ha-1) under the Hulun Buir structure and the diversity characteristics of Leymus chinensis meadow steppe.Results: The 0-10 cm soil layer of the G0.34 test area had the highest content, and the content of the G0.92 test area was lower than the other grazing treatments. With increasing depth, the carbon and nitrogen contents of microorganisms decreased. The diversity of soil bacteria in the light grazing test area (0.23Au ha-1) was higher than the heavy grazing area, and the diversity of fungi in the non-grazing area was higher than the specific grazing areas. Most bacterial species were enriched in the G0.00 grazing areas, and the other grazing intensities were less abundant. The underground biomass (P = 0.039) significantly influenced the bacterial community structure, and pH (P =0.032), total nitrogen (P =0.011) and litter (P =0.007) significantly influenced the fungal community.Conclusions: In conclusion, the structures of bacterial and fungal communities are very sensitive to grazing and varied with grazing intensity. Our findings demonstrated that a grazing intensity of approximately 0.23 Au ha-1 was the most appropriate for the grassland of the meadow in Hulun Buir.



Sign in / Sign up

Export Citation Format

Share Document