Cutter mark cross method for improvement of contact stiffness by controlling distribution of real contact area

2020 ◽  
Vol 63 ◽  
pp. 197-205
Author(s):  
Yuki Jorobata ◽  
Daisuke Kono
2014 ◽  
Vol 1017 ◽  
pp. 441-446 ◽  
Author(s):  
Kyoko Nakamura ◽  
Haruhisa Sakamoto

In previous study, the quantitative measurement method of contact stiffness of the joint considering real contact area is developed by experimental approach. However, the measurement of contact stiffness needs special device and skillful measuring technique. Therefore, in this paper, simplified calculation method with material properties and profile data of surface roughness obtained by profilometer is considered. As a result, real contact area, contact stiffness and contact spring stiffness calculated from specific wavelength of rough surface are near agreement with experimental value. Hence, it is revealed that there is dominant configuration in surface roughness.


2020 ◽  
pp. 57-60
Author(s):  
M.M. Matlin ◽  
V.A. Kazankin ◽  
E.N. Kazankina ◽  
A.I. Mozgunova

The dependences of the relative real contact area of the flat contacting surfaces of steel parts on the nominal pressure under dynamic contact loading are studied. It is determined, that the real contact area under dynamic loading is less than under static one. Keywords dynamic plastic hardness, contact approach, real contact area, contact stiffness. [email protected]


Author(s):  
Yongsheng Zhao ◽  
Xiaolei Song ◽  
Ligang Cai ◽  
Zhifeng Liu ◽  
Qiang Cheng

Accurate modeling of contact stiffness is crucial in predicting the dynamic behavior and chatter vibration of spindle–toolholder system for high-speed machining centers. This paper presents a fractal theory-based contact model of spindle–toolholder joint to obtain the contact stiffness and its real contact area. Topography of the contact surfaces of spindle–toolholder joint is fractal featured and determined by fractal parameters. Asperities in micro-scale are considered as elastic or plastic deformation. Then, the contact stiffness, the real contact area, the elastic contact force, and the plastic contact force of the whole contact surface are calculated by integrating the micro asperities. The relationship of the contact stiffness and the drawbar force follows a power law, in which the power index is determined by the fractal parameters. Experiments are conducted to verify the efficiency of the proposed model. The results from the fractal contact model of spindle–toolholder joint have good agreement with those of experiments.


2012 ◽  
Vol 40 (2) ◽  
pp. 124-150
Author(s):  
Klaus Wiese ◽  
Thiemo M. Kessel ◽  
Reinhard Mundl ◽  
Burkhard Wies

ABSTRACT The presented investigation is motivated by the need for performance improvement in winter tires, based on the idea of innovative “functional” surfaces. Current tread design features focus on macroscopic length scales. The potential of microscopic surface effects for friction on wintery roads has not been considered extensively yet. We limit our considerations to length scales for which rubber is rough, in contrast to a perfectly smooth ice surface. Therefore we assume that the only source of frictional forces is the viscosity of a sheared intermediate thin liquid layer of melted ice. Rubber hysteresis and adhesion effects are considered to be negligible. The height of the liquid layer is driven by an equilibrium between the heat built up by viscous friction, energy consumption for phase transition between ice and water, and heat flow into the cold underlying ice. In addition, the microscopic “squeeze-out” phenomena of melted water resulting from rubber asperities are also taken into consideration. The size and microscopic real contact area of these asperities are derived from roughness parameters of the free rubber surface using Greenwood-Williamson contact theory and compared with the measured real contact area. The derived one-dimensional differential equation for the height of an averaged liquid layer is solved for stationary sliding by a piecewise analytical approximation. The frictional shear forces are deduced and integrated over the whole macroscopic contact area to result in a global coefficient of friction. The boundary condition at the leading edge of the contact area is prescribed by the height of a “quasi-liquid layer,” which already exists on the “free” ice surface. It turns out that this approach meets the measured coefficient of friction in the laboratory. More precisely, the calculated dependencies of the friction coefficient on ice temperature, sliding speed, and contact pressure are confirmed by measurements of a simple rubber block sample on artificial ice in the laboratory.


Friction ◽  
2020 ◽  
Author(s):  
Rongxin Chen ◽  
Jiaxin Ye ◽  
Wei Zhang ◽  
Jiang Wei ◽  
Yan Zhang ◽  
...  

Abstract The tribological characteristics of cotton fibers play an important role in engineering and materials science, and real contact behavior is a significant aspect in the friction behavior of cotton fibers. In this study, the tribological characteristics of cotton fibers and their relationship with the real contact behavior are investigated through reciprocating linear tribotesting and real contact analysis. Results show that the friction coefficient decreases with a general increase in load or velocity, and the load and velocity exhibit a co-influence on the friction coefficient. The dynamic change in the real contact area is recorded clearly during the experiments and corresponds to the fluctuations observed in the friction coefficient. Moreover, the friction coefficient is positively correlated with the real contact area based on a quantitative analysis of the evolution of friction behavior and the real contact area at different loads and velocities. This correlation is evident at low velocities and medium load.


AIP Advances ◽  
2016 ◽  
Vol 6 (6) ◽  
pp. 065227
Author(s):  
Sung Keun Chey ◽  
Pengyi Tian ◽  
Yu Tian

2018 ◽  
Vol 282 ◽  
pp. 73-76 ◽  
Author(s):  
Toshiyuki Sanada ◽  
Masanao Hanai ◽  
Akira Fukunaga ◽  
Hirokuni Hiyama

In the post CMP cleaning, the contact condition between PVA brush and surface is very important. In this study, we observed the real contact area between a brush and surface using a collimating LED light and prism. As a result, we found that the real contact area increases with increasing the brush compression. In addition, we also found that the real contact area decreases when the brush starts to move, and the brush was locally compressed due to its deformation.


Sign in / Sign up

Export Citation Format

Share Document